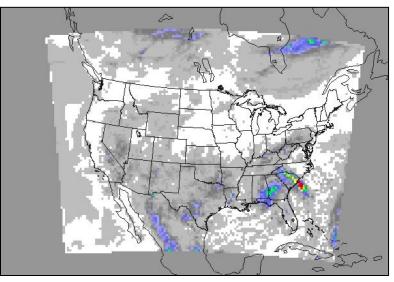
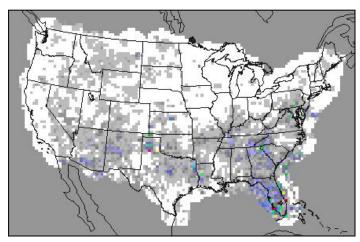

MET Grid-Stat Tool

John Halley Gotway


METplus Tutorial July 31 – August 2, 2019 NRL – Monterey, CA

Grid-Stat Tool



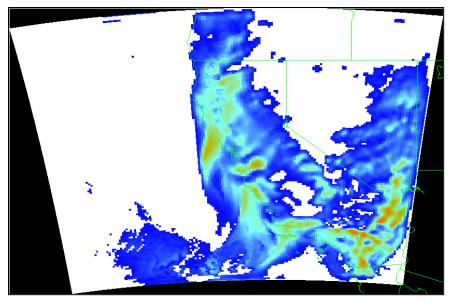
Grid-Stat: Overview

- Compare gridded forecasts to gridded observations on the same grid.
- Accumulate matched pairs over a defined area at a single point in time.
- Verify one or more variables/levels.
- Analysis tool provided to aggregate through time.

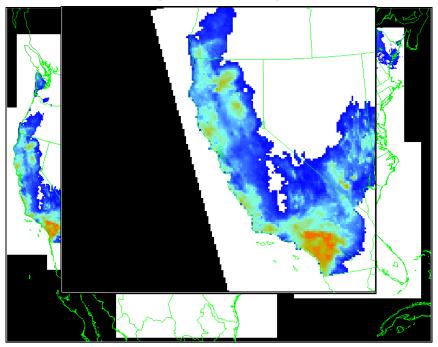
- Continuous statistics for raw fields.
- Single and Multi-Category counts and statistics for thresholded fields.
- Parametric and non-parametric confidence intervals for statistics.
- Compute partial sums for raw fields.
- Methods for probabilistic forecasts.
- Economic Cost/Loss Value.
- Neighborhood verification methods.
- Fourier decomposition.
- Gradient statistics.

Grid-Stat: Usage

Usage: grid_stat fcst file obs_file config_file [-outdir path] [-log file] [-v level] [-compress level]

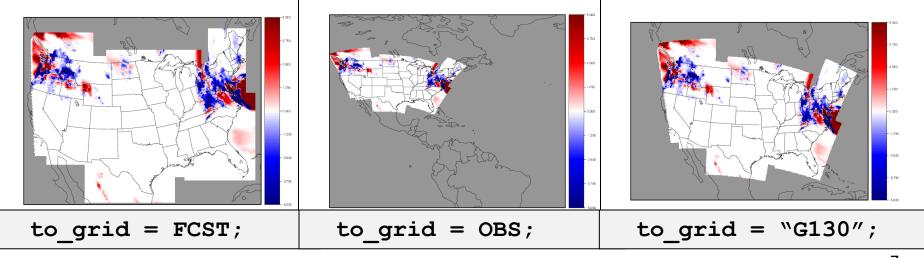

fcst_file	Gridded forecast file		
obs_file	Gridded observation file		
config_file	ASCII configuration file		
-outdir	Output directory to be used		
-log	Optional log file		
-V	Level of logging		

Grid-Stat: Input/Output


- Input Files
 - Gridded forecast and observation files
 - GRIB1 output of Unified Post-Processor (or other)
 - GRIB2 from NCEP (or other)
 - NetCDF from PCP-Combine, wrf_interp, or CF-compliant
 - Python Interface
 - ASCII configuration file
- Output Files
 - ASCII statistics file with all output lines (ends with ".stat")
 - Optional ASCII files sorted by line type with a header row (ends with "_TYPE.txt")
 - Optional NetCDF matched pairs file (ends with "__pairs.nc")

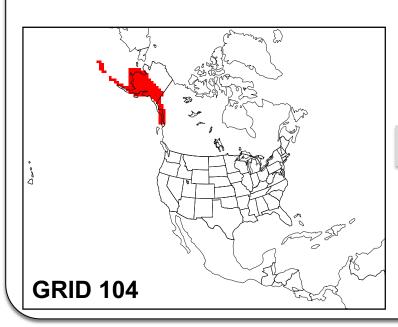
Grid-Stat: Common Grid

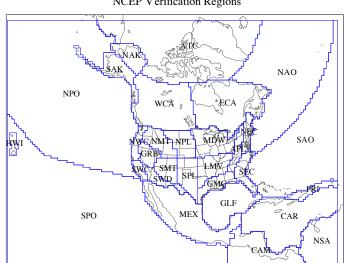
Model Forecast

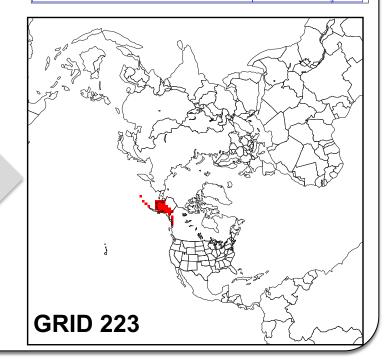

StagelV Analysis

- Forecast and observations must be placed on a common grid.
- Regrid the StageIV Analysis (GRIB) to the model domain: copygb –xg"255 5 169 154 31357 -129770 8 -120500 10395 10395 0 64" \ ST4.2010122212.06h ST4.2010122212.06h_regrid
- Automated regridding in **configuration file** or use **regrid_data_plane**.

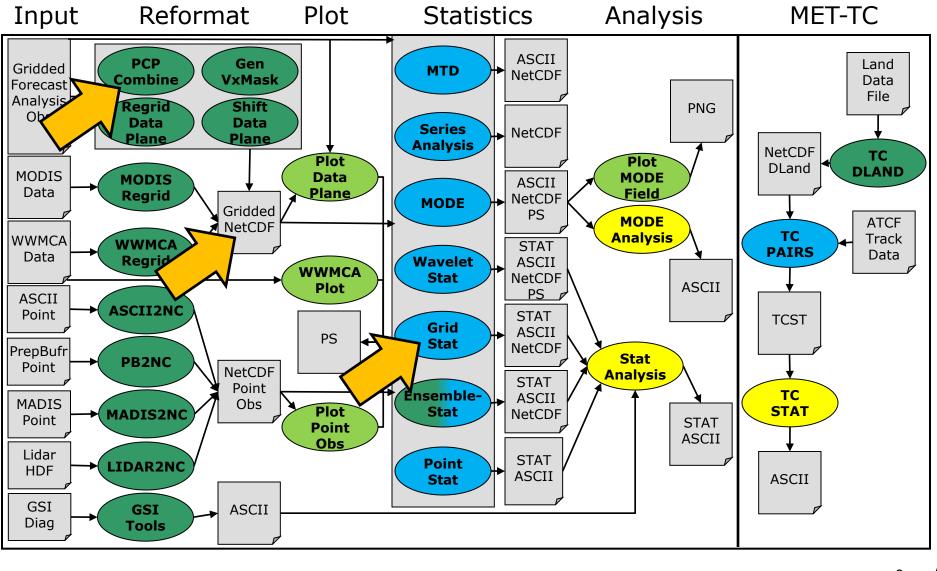
Grid-Stat: Automated Regriding BS 11 // Verification grid 152,250 11 $regrid = \{$ to grid = NONE; = BUDGET; method 101.500 width = 2; 76125 vld thresh = 0.5;shape = SQUARE;


DIFF: FCST - OBS




7

Automated Regridding of Masks


- NCEP Verification Regions defined for Grid 104.
 - CONUS, EAST, and WEST are groups of sub-regions.
- MET release includes polyline files (data/poly) and NetCDF masks (data/poly/NCEP_masks).
- Automatically regrid mask (NEAREST neighbor) to verification domain:
 - DEBUG 2: Regridding mask grid to the verification grid using nearest neighbor interpolation...

Example Data Flow

Grid-Stat: Configuration

- Many configurable parameters only set a few:
 - Precipitation accumulated over 24 hours.
 - GRIB1 forecast
 - NetCDF observation
- Threshold any rain and moderate rain (mm).
- Accumulate stats over all the points in the domain and just the eastern United States.
- Compute neighborhood statistics with two sizes.
- Generate continuous, categorical, and neighborhood line types.
- Write NetCDF pairs.

```
fcst = { // GRIB Input
                                          output flag = {
field = [
                                           fho
                                                  = BOTH;
                                           ctc
                                                  = BOTH;
              = "APCP";
                                           cts
                                                  = BOTH;
   name
              = ["A24"];
   level
                                                  = BOTH;
                                           mctc
   cat thresh = [>0.0, >20.0];
                                           mcts
                                                  = BOTH:
                                           cnt
                                                  = BOTH;
                                           sl112
1;
                                                  = BOTH;
                                           sall = NONE;
                                           vl112
                                                  = NONE :
obs = { // NetCDF from PCP-Combine
                                           val112 = NONE;
 field = [
                                           pct
                                                   = NONE;
                                           pstd
                                                   = NONE;
              = "APCP 24";
                                           pjc
   name
                                                  = NONE;
              = ["(*,*)"];
   level
                                           prc
                                                  = NONE :
   cat thresh = [ >0.0, >20.0 ];
                                           eclv
                                                  = NONE;
  }
                                           nbrctc = BOTH;
];
                                           nbrcts = BOTH;
                                           nbrcnt = BOTH;
                                           grad
                                                  = NONE;
 mask = \{
 grid = [ "FULL" ];
 poly = [
                                    nc pairs flag = {
   "MET BASE/poly/EAST.poly" ];
                                       latlon
                                                   = TRUE;
 }
                                       raw
                                                   = TRUE;
                                       diff
                                                   = TRUE;
nbrhd = \{
                                       climo
                                                   = TRUE;
  vld thresh = 1.0;
                                       weight
                                                   = FALSE;
  width
             = [3, 5];
                                       nbrhd
                                                   = FALSE;
  cov thresh = [ >=0.5 ];
                                       fourier
                                                   = FALSE;
                                       gradient
                                                   = FALSE;
                                       apply mask = TRUE;
```

Grid-Stat: Field Name and Level

- GRIB1 and GRIB2 files
 - name = "GRIB Abbreviation";
 - <u>http://www.nco.ncep.noaa.gov/pmb/docs/on388/table2.html</u>
 - TMP for Temperature, APCP for accumulated precipitation.
 - **level = ["string"];** Multiple values expand to multiple vx tasks
 - Level indicator followed by level value.
 - A for accumulation interval in HH[MMSS] format (A06).
 - **P** for pressure level (*P500*) or layer (*P500-600*).
 - **Z** for vertical level (*Z2* or *Z10*).
 - L for generic level type (*L100*).
 - **R** for a specific GRIB record number (*R225*).
- Gridded NetCDF files
 - **name = "string";** Defines NetCDF variable name.
 - **level = ["string"];** Defines index into dimensions.
 - For APCP_06(lat,lon) from PCP-Combine output
 - name = "APCP_06"; level = ["(*,*)"];
 - For TT(Time, num_metgrid_levels, south_north, west_east) from p_interp
 - name = "TT"; level = ["(0,0,*,*)", "(0,1,*,*)", "(0,2,*,*)"];

Grid-Stat: Config File Defaults

- MET Statistics tools parse up to 4 configuration files:
 - 1. MET_BASE/config/ConfigConstants defines configuration file constants (e.g. NONE, STAT, BOTH) and should not be modified.
 - 2. MET_BASE/config/ConfigMapData defines default map data for all plots (map data files, line colors, widths, and types for Plot-Point-Obs, Plot-Data-Plane, Wavelet-Stat, and MODE).
 - 3. MET_BASE/config/GridStatConfig_default defines default settings for the specific tool.
 - 4. User-specific configuration file passed on the command line override default settings.

NOTE: MET_BASE/config/README describes config file options. **NOTE:** When running a shared installation of MET, override default settings in the **user-specific configuration** file rather than modifying the system-wide defaults.

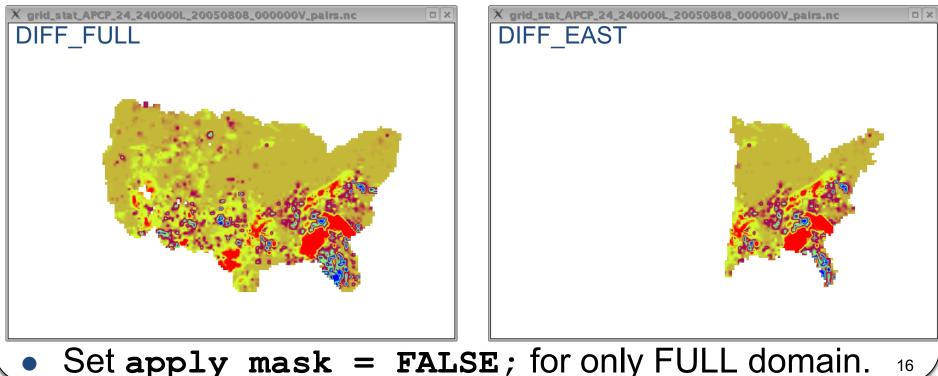
Grid-Stat: Run

grid_stat \
 sample_fcst.grb sample_obs.nc \
 GridStatConfig_APCP24 -outdir out -v 2

DEBUG 1: Default Config File: met-X.Y/share/met/data/config/GridStatConfig_default DEBUG 1: User Config File: GridStatConfig_APCP24
DEBUG 1: Forecast File: sample fcst.grb
DEBUG 1: Observation File: sample obs.nc
 DEBUG 2:
DEBUG 2: Processing APCP/A24 versus APCP A24, for interpolation method UW MEAN(1), over region FULL, using 6412 pairs
DEBUG 2: Computing Categorical Statistics.
DEBUG 2: Computing Multi-Category Statistics.
DEBUG 2: Computing Continuous Statistics.
DEBUG 2: Processing APCP/A24 versus APCPA24, for interpolation method UW MEAN(1), over region EAST, using 2582 pairs.
DEBUG 2: Processing APCP/A24 versus APCPA24, for interpolation method NBRHD(9), raw thresholds of >0.000 and >0.000,
over region EAST, using 5829 pairs.
DEBUG 2: Computing Neighborhood Categorical Statistics.
DEBUG 2: Computing Neighborhood Continuous Statistics.
MORE NEIGHBORHOOD VERIFICATION TASKS LISTED
DEBUG 2:
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V.stat
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_fho.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_ctc.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_cts.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_mctc.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_mcts.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_cnt.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_s1112.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_nbrctc.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_nbrcts.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_nbrcnt.txt
DEBUG 1: Output file: out/grid_stat_240000L_20050808_000000V_pairs.nc

Grid-Stat: ASCII Output

- Categorical Single Threshold
 - Contingency table counts and stats (FHO, CTC, CTS, ECLV)
- Categorical Multiple Thresholds
 - NxN Contingency table counts and stats (MCTC, MCTS)
- Scalars raw fields
 - Continuous statistics (CNT) and partial sums (SL1L2, SAL1L2)
- Wind Vectors
 - Vector statistics (VCNT) and partial sums (VL1L2, VAL1L2)
- Probabilistic
 - Nx2 Contingency table counts and stats (PCT, PSTD)
 - Continuous statistics and ROC curve (PJC, PRC)
 - Economic Cost/Loss value (ECLV)
- Neighborhood apply threshold, define neighborhood
 - Neighborhood continuous statistics (NBRCNT)
 - Neighborhood contingency table counts (NBRCTC)
 - Neighborhood contingency table statistics (NBRCTS)
 - Gradient line type (GRAD)


24 common header columns + Line type specific columns

Grid-Stat: Sample Output

- 1. **STAT** file output for sample run:
 - 2 lines each for CNT, MCTC, MCTS, and SL1L2
 - = 2 verification regions (FULL and EAST)
 - 4 lines each for FHO, CTC, and CTS
 - = 2 regions * 2 thresholds
 - 8 lines each for NBRCNT, NBRCTC, NBRCTS
 - = 2 regions * 2 thresholds * 2 neighborhood sizes
- 2. Additional TXT files for each line type
- 3. NetCDF file containing matched pairs

Grid-Stat: NetCDF Matched Pairs

- Forecast, observation, and difference fields for each combination of...
 - Variable, level, masking region, and interpolation method (smoothing)
- Sample output contains 6 fields:
 - FCST, OBS, and DIFF for FULL and EAST

Grid-Stat: CTC Output Line

VERSION	VX.Y	OBTYPE	MC_PCP	
MODEL	WRF	VX_MASK	EAST	
DESC	NA	INTERP_MTHD	UW_MEAN	
FCST_LEAD	240000	INTERP_PNTS	1	
FCST_VALID_BEG	20050808_000000	FCST_THRESH	>20.000	
FCST_VALID_END	20050808_000000	OBS_THRESH	>20.000	
OBS_LEAD	000000	COV_THRESH	NA	
OBS_VALID_BEG	20050808_000000	ALPHA	NA	
OBS_VALID_END	20050808_000000	LINE_TYPE	CTC	
FCST_VAR	APCP_24	TOTAL	2582	
FCST_UNITS	mm	FY_OY (hits)	5	
FCST_LEV	A24	FY_ON (f.a.)	104	
OBS_VAR	APCP_24	FN_OY (miss)	70	
OBS_UNITS	mm	FN_ON (c.n.)	2403	
OBS_LEV	A24		17	

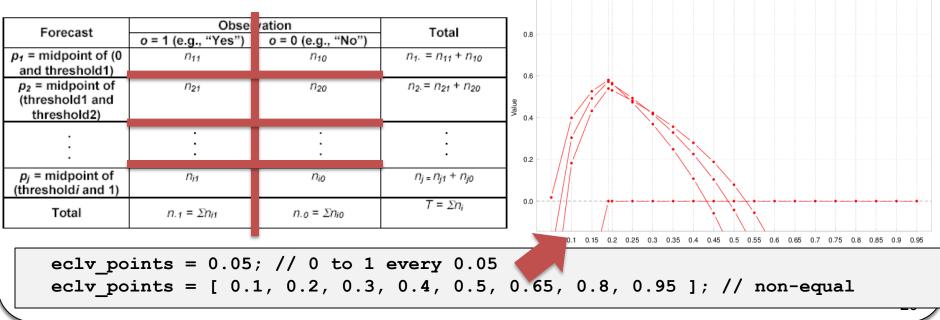
FHO vs CTC Line Type

- Grid-Stat, Point-Stat, and Stat-Analysis can output FHO and CTC line types.
 - Values are equivalent (and redundant).
 - CTC has integer counts for 4 cells of 2x2 table.
 - FHO has floating point rates.
 - FHO rounding issues for rare events.

LINE_TYPE	CTC	LINE_TYPE		FHO
TOTAL	2582	TOTAL		2582
FY_OY (hits)	5	F_RATE (fcst rate)	(5+104)/2582	0.042215
FY_ON (false alarms)	104	H_RATE (hit rate)	5/2582	0.0019365
FN_OY (misses)	70	O_RATE (obs rate)	(5+70)/2582	0.029047
FN_ON (correct neg)	2403			

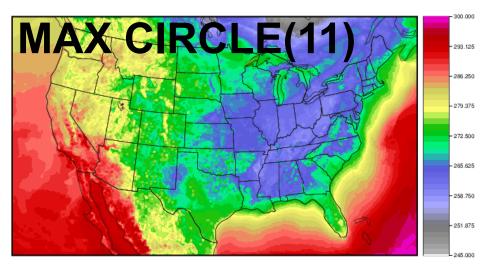
Comparing Different Fields

- Grid-Stat, Point-Stat, and all STAT tools may be used to compare different variables.
 - User must interpret results.
 - Example: Convective Precip vs. Total Precip
 - Configuration file settings:
 - Selecting variable/levels


```
fcst = {
                               obs = \{
field = [
                                field = [
  name
            = "ACPCP";
                                 name = "APCP";
  level
            = [ "A24" ];
                                 level = [ "A24" ];
                                 cat thresh = [>0.0];
  cat thresh = [>0.0];
];
                                1;
};
                               };
```

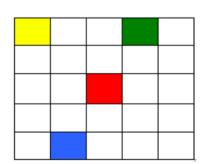
Economic Cost/Loss Value

- Grid-Stat, Point-Stat, and Stat-Analysis can output the ECLV line type.
- Equivalent to the VSDB ECON line type, except...
 - ECON is only generated when evaluating ensemble probabilities.
 - ECLV from 2x2 CTC contingency table yields a single curve.
 - ECLV from Nx2 PCT probabilistic contingency table yields N curves.

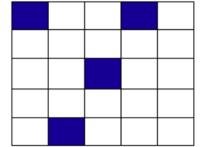

Economic Cost/Loss Value from PCT

- One ECLV line equals one curve on the plot.
 - Undefined at 0 and 1.
 - Maximized for the base rate.

Grid-Stat: Data Smoothing


- Higher resolution forecasts typically score worse than lower resolution ones for traditional scores, like RMSE.
- Specify interp section to apply smoothing method(s) prior to computing statistics.
- Smoothing methods indicated in INTERP_MTHD and INTERP_PNTS columns.

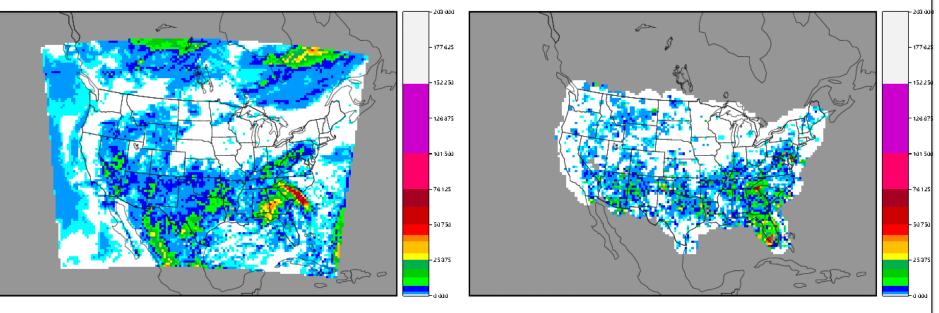

```
11
// Data smoothing methods
//
interp = {
 // FCST, OBS, or BOTH
 field
             = BOTH;
 vld thresh = 1.0;
 shape = SQUARE;
 type = [
    // Default, no smoothing
    { method = NEAREST;
      width = 1; \},
    // Mean of 11x11 square
    { method = UW MEAN;
      width = 11; \},
    // Max of circle diam 11
    \{ method = MAX; \}
      width = 11;
      shape = CIRCLE; }
  ];
```


Grid-Stat: Neighborhoods

- As with all neighborhood methods (i.e. HiRA), allows for some spatial / temporal uncertainty in either model or observation by giving credit for being 'close'.
- Apply categorical threshold and neighborhood width to convert gridded forecast and observation fields into fractional coverage fields.
- Select SQUARE or CIRCLE shape.
- Every permutation of **cat_thresh** and **nbrhd.width**.
 - NBRCNT statistics (FBS, FSS) computed directly from fractional coverage fields.
 - Apply cov_thresh thresholds to fractional coverage fields to compute NBRCTC and NBRCTS counts and statistics (i.e. like CTC and CTS).

Model Forecast White boxes = 0 Colored boxes > 0

Threshold Forecast Blue boxes = event

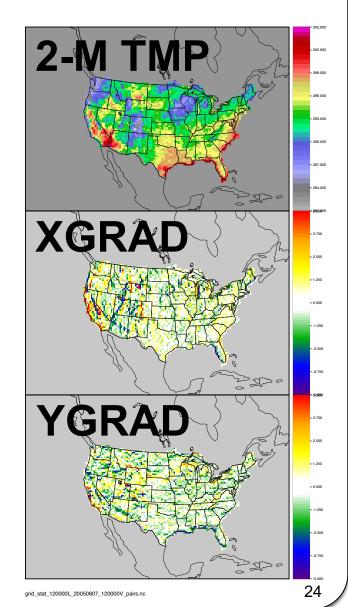

Fractional Proportion

- 1x1 Neighborhood: 1/1
- 3x3 Neighborhood: 1/9
- 5x5 Neighborhood: 4/25

```
cat_thresh = [ >0.0, >=6.35 ];
...
nbrhd = {
  width = [ 1, 3, 5, 7 ];
  cov_thresh = [ >=0.5 ];
  vld_thresh = 1.0;
  shape = SQUARE;
}
```

Grid-Stat: Neighborhoods

- Threshold 24-APCP >= 0.1"
- Edge effects as width increases.
- FSS increases as width increases:
 - 0.64287, 0.73593, 0.80247
 - 0.85106, 0.89191, 0.91487
 - 0.92632, 0.93536, 0.94517

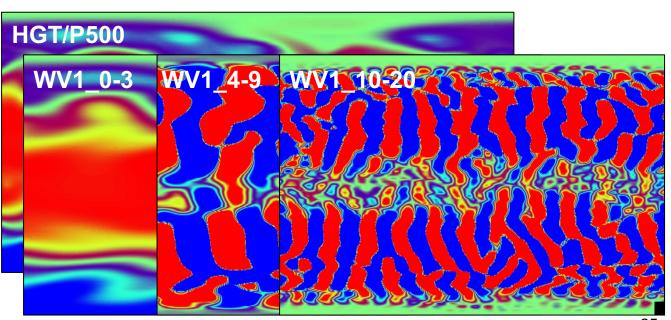


grid_stat_APCP_24_240000L_20050808_000000V_pairs.nc

grid_stat_APCP_24_240000L_20050808_000000V_pairs.nc

Grid-Stat: Gradients

- **GRAD** line type contains the S1 score and its components.
 - WMO-mandated statistic from 1954.
 - Computed over the gradients of forecast and observation fields computed in the X and Y grid direction.
 - Adapted from VSDB code:
 - FGBAR: mean forecast gradient
 - OGBAR: observed gradient
 - MGBAR: mean of maximum gradient
 - EGBAR: mean of gradient differences
 - S1 = 100 * EGBAR / MGBAR
 - S1_OG = 100 * EGBAR / OGBAR
 - FGOG_RATIO = FGBAR / OGBAR

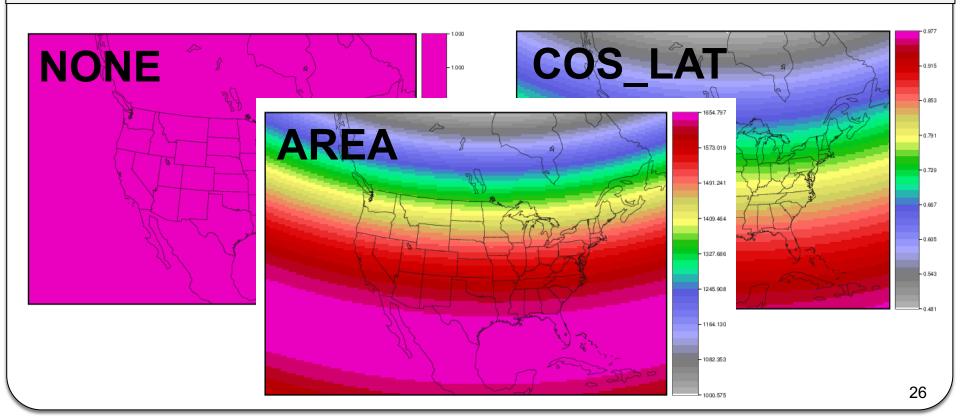


Grid-Stat: Fourier Decomposition

- Supports 1-Dimensional Fourier decompositions.
- Affects output for CNT, SL1L2, SAL1L2, VL1L2, and VAL1L2 line types.
- Configuration file option to specify the waves:

```
fourier = {
    wave_ld_beg = [ 0, 0, 4, 10 ];
    wave_ld_end = [ 72, 3, 9, 20 ];
}
```

- Wave numbers indicated in the INTERP_MTHD column:
 - WV1_0-72
 - WV1_0-3
 - WV1_4-9
 - WV1_10-20



Grid-Stat: Grid Box Weighting

// The "grid_weight_flag" specifies how grid weighting should be applied...
// - "NONE" to disable grid weighting using a constant weight (default).
// - "COS_LAT" to define the weight as the cosine of the grid point latitude.
// This an approximation for grid box area used by NCEP and WMO.
// - "AREA" to define the weight as the true area of the grid box (km^2).
//

grid_weight_flag = NONE;

11

Config: Conditional Continuous

- Continuous statistics (CNT) from Grid-Stat and Point-Stat include FBAR, OBAR, ME, MAE, RMSE, and PR_CORR.
- A single matched pair (MPR) consists of an observation value paired with a forecast value.
- By default, all pairs within the masking region are included in the CNT statistics.
- Specify cnt_thresh to filter which pairs should be included.
- Specify cnt_logic to combine filters for fcst and obs data.
- These settings are listed in the FCST_THRESH and OBS_THRESH columns.

```
//
// fcst OR obs meets threshold
//
cnt_thresh = [ NA, >1.0, >3.0 ];
cnt_logic = UNION;
fcst = { ... }
obs = { ... } * NA threshold always TRUE
```

```
//
// fcst AND obs meets threshold
//
cnt_thresh = [ NA, >1.0, >3.0 ];
cnt_logic = INTERSECTION;
fcst = { ... }
obs = { ... }
```

```
//
// obs meets threshold
//
cnt_logic = INTERSECTION;
fcst = { cnt_thresh = [ NA, NA, NA ]; }
obs = { cnt_thresh = [ >1.0, >3.0 ]; }
```

Config: Converting Data

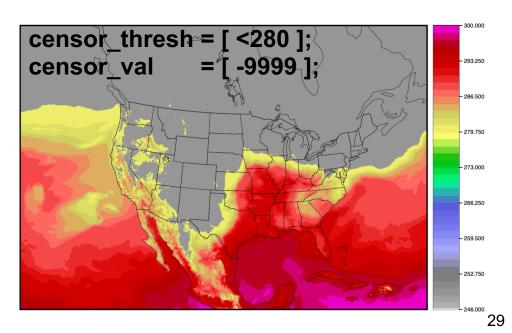
- Config file language supports functions of 1 variable.
- Use convert(x) function to define unit conversions:

convert(x) = log10(x); convert(x) = sqrt(x);

 Common conversion functions pre-defined in share/met/config/ConfigConstants:

```
K_to_C(t) = t - 273.15;

C_to_K(t) = t + 273.15;


C_to_F(t) = 1.8 * t + 32.0;
```

Config: Censoring Data

- Applying MET to wider range of data types reveals need for pre-processing.
- Censor logic is applied to raw data before any regridding is done.
- May be specified separately for each forecast and/or observation field:
 - The **censor_thresh** entry is an array of thresholds.
 - The **censor_val** entry is an array of replacement values.
- Reflectivity Example:
 - Forecast reflectivity values are 0 or >= 35 dBZ.
 - Observed reflectivity values are continuous less than 35 dBZ.
 - Define observation censor:

```
censor_thresh = [ <35 ];
censor_val = [ 0 ];
```

- Used to make the forecast and observation data more comparable.
- Can be used for range checking data.

Config: Climatology Data

- Required for anomaly correlation (ANOM_CORR) SAL1L2, and VAL1L2.
- NCEP monthly 2.5 degree
 - match_day = FALSE
- NCEP daily 1.0 degree
 - match_day = TRUE
- ERA daily 1.5 degree
 - match_day = TRUE
- Any other reference forecast.

```
climo mean
            = {
   file name = [
   // List of file names
   ];
  field = [
   // Same length as fcst.field
   ];
  regrid = {
    method
               = NEAREST;
    width
               = 1;
    vld thresh = 0.5;
   time_interp_method = DW_MEAN;
  match day
                     = FALSE;
   time step
                     = 21600;
```

Config: Binned Climatologies

- Grid-Stat and Point-Stat process climatological distributions (i.e. climo mean and standard deviation).
- Binned climatologies affect only the computation of probabilistic statistics.
- Config file options:

climo_mean = { ... }; // Climo Mean Fields climo_stdev = { ... }; // Climo Standard Deviation climo_cdf_bins = 10; // Number of Climo Bins // Or array of bin values

- For each observation value, use the climo mean and standard deviation and compute a CDF value between 0 and 1.
- Place that observation into the correct climo CDF bin.
- Compute stats for all pairs within each bin.
- When climo mean and standard deviation are provided, derive the climatological probability values when computing Brier Skill Score.
- Bin number appended to the VX_MASK output column:
 - FULL_BIN1, FULL_BIN2, ..., FULL_BIN10