Basic Verification Concepts

Tressa L. Fowler

National Center for Atmospheric Research Boulder Colorado USA

Basic concepts - outline

- What is verification?
- Why verify?
- Identifying verification goals
- Forecast "goodness"
- Designing a verification study
- Types of forecasts and observations
- Matching forecasts and observations
- Verification attributes
- Miscellaneous issues
- Questions to ponder: Who? What? When? Where? Which? Why?

How do you do verification?

- Using MET is the easy part, scientifically speaking.
- Good verification depends mostly on what you do before and after MET.
 - What do you want to know?
 - Good forecasts.
 - Good observations.
 - Well matched.
 - Appropriate selection of methods
 - Thorough and correct interpretation of results.

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

What is verification?

• Verification is the process of comparing forecasts to relevant observations

- Verification is one aspect of measuring forecast *goodness*

- Verification measures the *quality* of forecasts (as opposed to their *value*)
- For many purposes a more appropriate term is *"evaluation"*

Why verify?

Purposes of verification (traditional definition)

- Administrative purpose
 - Monitoring performance
 - Choice of model or model configuration (has the model improved?)
- Scientific purpose
 - Identifying and correcting model flaws
 - Forecast improvement

- Economic purpose
 - Improved decision making
 - "Feeding" decision models or decision support systems

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

Why verify?

- What are some other reasons to verify weather forecasts?
 - Help operational forecasters understand model biases and select models for use in different conditions
 - Help "users" interpret forecasts (e.g., "What does a temperature forecast of 0 degrees really mean?")
 - Identify forecast weaknesses, strengths, differences

Identifying verification goals

What *questions* do we want to answer?

- Examples:
 - ✓ In what locations does the model have the best performance?
 - ✓ Are there regimes in which the forecasts are better or worse?
 - ✓ Is the probability forecast well calibrated (i.e., reliable)?
 - ✓ Do the forecasts correctly capture the natural variability of the weather?

Other examples?

Identifying verification goals (cont.)

- What forecast performance *attribute* should be measured?
 - Related to the *question* as well as the type of forecast and observation
- Choices of verification statistics, measures, graphics
 - Should match the type of forecast and the attribute of interest
 - Should measure the quantity of interest (i.e., the quantity represented in the question)

Forecast "goodness"

• Depends on the quality of the forecast

AND

• The user and his/her application of the forecast information

Good forecast or bad forecast?

Many verification approaches would say that this forecast has NO skill and is very inaccurate.

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

Good forecast or Bad forecast?

If I'm a water manager for this watershed, it's a pretty bad forecast...

Good forecast or Bad forecast?

Different verification approaches can measure different types of "goodness"

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

different ideas about

what makes a

forecast good

Forecast "goodness"

- Forecast quality is only one aspect of forecast "goodness"
- Forecast value is related to forecast quality through complex, non-linear relationships
 - In some cases, improvements in forecast quality (according to certain measures) may result in a <u>degradation</u> in forecast value for some users!
- *However* Some approaches to measuring forecast quality can help understand goodness
 - Examples
 - \checkmark Diagnostic verification approaches
 - \checkmark New features-based approaches
 - ✓ Use of multiple measures to represent more than one attribute of forecast performance
 - ✓ Examination of multiple thresholds

Basic guide for developing verification studies

Consider the users...

- ... of the forecasts
- ... of the verification information
- What aspects of forecast quality are of interest for the user?
 - Typically (always?) need to consider multiple aspects

Develop verification questions to evaluate those aspects/attributes

- <u>Exercise</u>: What verification questions and attributes would be of interest to ...
 - ... operators of an electric utility?
 - ... a city emergency manager?
 - ... a mesoscale model developer?
 - ... aviation planners?

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

Basic guide for developing verification studies

Identify *observations* that represent the *event* being forecast, including the

- Element (e.g., temperature, precipitation)
- Temporal resolution
- Spatial resolution and representation
- Thresholds, categories, etc.

Observations are not truth

- We can't know the complete "truth".
- Observations generally are more "true" than a model analysis (at least they are relatively more independent)
- Observational uncertainty should be taken into account in whatever way possible
 - ✓ In other words, how well do adjacent observations match each other?

Copyright 20 reserved esearch, all rights

Observations might be garbage if

- Not Independent (of forecast or each other)
- Biased
 - Space
 - Time
 - Instrument
 - Sampling
 - Reporting
- Measurement errors
- Not enough of them

Basic guide for developing verification studies

Identify multiple *verification attributes* that can provide answers to the questions of interest Select *measures and graphics* that appropriately measure and

represent the attributes of interest

Identify a *standard of comparison* that provides a reference level of skill (e.g., persistence, climatology, old model)

Types of forecasts, observations

- Continuous
 - Temperature
 - Rainfall amount
 - 500 mb height
- Categorical
 - Dichotomous
 - ✓ Rain vs. no rain
 - \checkmark Strong winds vs. no strong wind
 - \checkmark Night frost vs. no frost
 - ✓ Often formulated as Yes/No
 - Multi-category
 - ✓ Cloud amount category
 - ✓ Precipitation type

May result from *subsetting* continuous variables into categories

✓ <u>Ex</u>: Temperature categories of 0-10, 11-20, 21-30, etc.

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

ISTANBUL TEMPERATURE

FORECAST

Types of forecasts, observations

- Probabilistic
 - Observation can be dichotomous, multi-category, or continuous
 - Precipitation occurrence Dichotomous (Yes/No)
 - Precipitation type Multi-category
 - Temperature distribution Continuous
 - Forecast can be
 - Single probability value (for dichotomous events)
 - Multiple probabilities (discrete probability distribution for multiple categories)
 - Continuous distribution
 - For dichotomous or multiple categories, probability values may be limited to certain values (e.g., multiples of 0.1)

2-category precipitation forecast (PoP) for US

- Multiple iterations of a continuous or categorical forecast
 - May be transformed into a probability distribution
- Observations may be continuous, dichotomous or multi-category

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

ECMWF 2-m temperature meteogram for Helsinki

20

- May be the *most difficult* part of the verification process!
- Many factors need to be taken into account
 - Identifying observations that represent the forecast event
 - ✓ <u>Example</u>: Precipitation accumulation over an hour at a point
 - For a gridded forecast there are many options for the matching process
 - Point-to-grid
 - Match obs to closest gridpoint
 - Grid-to-point
 - Interpolate?
 - Take largest value?

• Point-to-Grid and Grid-to-Point

• Matching approach can impact the results of the verification

Interpolation Examples

Distance Weighted Mean

Nearest Neighbor

Least Squares

Copyright 2015, University Corporation for Atmospheric Research, all rights reserved

Final point:

• It is not advisable to use the model analysis as the verification "observation".

- Why not??
- Issue: Non-independence!!

Comparison and inference

Uncertainty in scores and measures shouldbe estimated whenever possible!

- Uncertainty arises from
 - Sampling variability
 - Observation error
 - Representativeness differences
 - Others?
- Erroneous conclusions can be drawn regarding improvements in forecasting systems and models
- Methods for confidence intervals and hypothesis tests
 - Parametric (i.e., depending on a statistical model)
 - Non-parametric (e.g., derived from resampling procedures, often called "bootstrapping")

Verification attributes

- Verification attributes measure different aspects of forecast quality
 - Represent a range of characteristics that should be considered
 - Many can be related to joint, conditional, and marginal distributions of forecasts and observations

Joint : The probability of two events in conjunction.

Pr (Tornado forecast AND Tornado observed) = 30 / 2800 = 0.01

Conditional : The probability of one variable given that the second is already determined.

Pr (Tornado Observed | Tornado Fcst) = 30/50 = 0.60

Marginal : The probability of one variable without regard to the other.

Pr(Yes Forecast) = 100/2800 = 0.04 Pr(Yes Obs) = 50 / 2800 = 0.02

Tornado	Tornado Observed		
forecast	yes	no	Total fc
yes	30	70	100
no	20	2680	2700
Total obs	50	2750	2800 Research
all rights reserved			

Verification attribute examples

- Bias
 - (Marginal distributions)
- Correlation
 - Overall association (Joint distribution)
- Accuracy
 - Differences (Joint distribution)
- Calibration
 - Measures conditional bias (Conditional distributions)
- Discrimination
 - Degree to which forecasts discriminate between different observations (Conditional distribution)

Miscellaneous issues

- In order to be *verified*, forecasts must be formulated so that they are *verifiable*!
 - <u>Corollary</u>: All forecasts should be verified if something is worth forecasting, it is worth verifying
- Stratification and aggregation
 - Aggregation can help increase sample sizes and statistical robustness <u>but</u> can also hide important aspects of performance
 - ✓ Most common regime may dominate results, mask variations in performance.
 - Thus it is very important to *stratify results into meaningful, homogeneous sub-groups*

Some key things to think about ...

Who...

- ... wants to know?

What...

- … does the user care about?
- ... kind of parameter are we evaluating? What are its characteristics (e.g., continuous, probabilistic)?
- ... thresholds are important (if any)?
- … forecast resolution is relevant (e.g., site-specific, areaaverage)?
- ... are the characteristics of the obs (e.g., quality, uncertainty)?
- … are appropriate methods?

Why...

- ...do we need to verify it?

Some key things to think about...

How...

– ...do you need/want to present results (e.g., stratification/aggregation)?

Which...

- -...methods and metrics are appropriate?
- ... methods are required (e.g., bias, event frequency, sample size)

What you can do with MET verification software depends on what type of data you have. The **format** (grid, point) of your data determines your MET tool(s).

The **type** (continuous, binary) of your data determines the analyses to use within each tool.

Gridded Forecasts (2D or 3D)

copyright 2015, UCAR, all rights reserved.

Point Observations (2D or 3D)

copyright 2015, UCAR, all rights reserved.

Time

• If your forecasts and observations are not at the same time, you may need to define a time window for your observations.

Gridded Observations

(2D or 3D)

Past 24-hour accumulated precip. (water equiv inches)

.01 .05 .1 .2 .3 .4 .5 .75 1 1.25 1.5 1.75 2 4 6 8

Matching Grids to Grids

• Must use some converter to put forecasts and observations on the same grid.

– Example: copygb

Fraction = 6/25 = 0.24 Fraction = 6/25 = 0.24

Intensity threshold exceeded where squares are blue

slide from Mittermaier

Gridded data to transform into **Objects**

REAL - observed

Forecast 1

Forecast 2

copyright 2015, UCAR, all rights reserved.

Pixels (traditional Verification)

or

Pictures (Object Verification)?

- Humans can pick out which objects exist and go together.
- In object based verification, we use software to mimic this process.

REAL - observed

Forecast 1

Data	MET Tool
Gridded Forecasts Gridded Observations	Grid stat (traditional or neighborhood) Series Analysis Wavelet Stat MODE Ensemble Tool
Gridded Forecasts Point Observations	Point Stat Ensemble Tool
Tropical Cyclone A decks and B decks (both point observations)	MET - TC

Resources

Verification Methods FAQ: http://www.cawcr.gov.au/projects /verification/

Verification Discussion Group: Subscribe at <u>http://mail.rap.ucar.edu/mailman/</u> <u>listinfo/vx-discuss</u>