# Statistical significance, confidence, uncertainty

Tressa L. Fowler

## Accounting for Uncertainty

- Observational
- Model
  - Model parameters
  - Physics
  - Verification scores
- Sampling



- Verification statistic is a realization of a random process
- What if the experiment were re-run under identical conditions? Would you get the same answer?

#### Uncertainty estimates are among a long list of important verification practices

- Well defined questions or goals.
- Large, representative, (identical?) sample.
- Consistent, independent observations.
- Appropriate methods and statistics.
- Uncertainty estimates.
- Spatial, temporal, and conditional differences evaluated.
- User relevant results.
- Thoroughly tested software.

You can't fix by analysis what you bungled by design. - Light, Singer and Willett.

Define question(s) first.

Then the confidence interval is around the right statistic.

- •Which model is best?
- Is my model upgrade an improvement?
- •How frequently are ceilings in the correct category?

#### Practical vs. statistical significance

- May not be the same. Why?
  - Failure to use significant figures.
  - Very large sample sizes.
  - Stats assumes independent samples, but weather rarely delivers.
- Which do you need? Both!

#### Two ways to examine scores

Gilbert Skill Score (or ETS)



Threshold (mm)

#### Confidence Intervals (CIs)

"If we re-run the experiment N times, and create N (1-α)100% Cl's, then we expect the true value of the parameter to fall inside (1α)100 of the intervals."

Confidence intervals can be parametric or non-parametric...



### Types of Confidence Intervals

#### Bootstrap

- Available for almost any statistic.
- More robust to outliers.
- Sensitive to lack of continuity, small samples.

#### Parametric (normal)

- Sensitive to departures from assumed distribution.
- Often sensitive to outliers.
- Not available for some statistics.

## Normal Approximation Cl's



Is a  $(1-\alpha)100\%$  Normal CI for  $\Theta$ , where

- Θ is the statistic of interest (e.g., the forecast mean)
- $se(\Theta)$  is the standard error for the statistic
- $z_v$  is the v-th quantile of the standard normal distribution where v=  $\alpha/2$ .
- A typical value of  $\alpha$  is 0.05 so (1- $\alpha$ )100% is referred to as the 95th percentile Normal CI

Normal Approximation Cl's



## Application of Normal Approximation Cl's

#### • Independence assumption (i.e., "iid") – temporal and spatial

- Should check the validity of the independence assumption
- MET accounts for first order temporal correlation

#### Normal distribution assumption

- Should check validity of the normal distribution (e.g., qq-plots, other methods)
- MET does not do this should be done outside of MET
- However... MET applies appropriate approaches to verification statistics

#### Multiple testing

• When computing many confidence intervals, the true significance levels are affected (reduced) by the number of tests that are done.

## Normal Approximation Cl's

Normal approximation is appropriate for numerous verification measures

Examples: Mean error, Correlation, ACC, BASER, POD, FAR, CSI

• Alternative CI estimates are available for other types of variables

*Examples*: forecast/observation *variance*, *GSS*, *HSS*, *FBIAS*, *Brier Score* 

• All approaches expected the sample values to be independent and identically distributed.



## (Nonparametric) Bootstrap Cl's

IID Bootstrap Algorithm

- 1. Resample with replacement from the sample (forecast and observation pairs),  $x_1, x_2, ..., x_n$
- 2. Calculate the verification statistic(s) of interest from the resample in step 1.
- 3. Repeat steps 1 and 2 many times, say B times, to obtain a sample of the verification statistic(s)  $\vartheta_B$ .
- 4. Estimate  $(1-\alpha)100\%$  Cl's from the sample in step 3.

Empirical Distribution (Histogram) of statistic calculated on repeated samples



Values of statistic  $\vartheta_B$ 

#### Bootstrap CI Considerations

- Number of points impacts speed of bootstrap
  - Grid-based typically uses more points than Point-based
  - <u>THUS</u>: Bootstrap is quicker with Point-based
- Number of resamples impacts speed of bootstrap
  - Recommended value is 1000
  - If you need to reduce try to determine where solutions converge to pick your value
- Bootstrap can be disabled in MET, if concerned about compute speed - check status in config file before running

## METViewer alternatives

- Two types of parametric intervals available where appropriate.
  - Accumulate scores (e.g. overall average), find parametric interval.
  - Summarize scores (e.g. find average or median value of all daily POD values), find interval appropriate for average or median.
- Bootstrap the *statistics* for each field over time.
  - Measures (between-field) uncertainty of the estimates over time, rather than the within field uncertainty.
- Pairwise difference statistics and intervals (with event equalization).
  - Gives more power to detect differences by eliminating case to case variability.

#### Conclusions

- Uncertainty estimates are an essential part of good verification evaluations.
- All estimates are wrong, some estimates are useful.
- MET and METViewer developers strive to provide the most correct and useful intervals for output statistics.

## References and further reading

- Gilleland, E., 2010: Confidence intervals for forecast verification. NCAR Technical Note NCAR/TN-479+STR, 71pp. Available at: https://opensky.ucar.edu/islandora/object/technotes%3A491
- Jolliffe and Stephenson (2011): Forecast verification: A practitioner's guide, 2<sup>nd</sup> Edition, Wiley & sons
- JWGFVR (2009): Recommendation on verification of precipitation forecasts. WMO/TD report, no.1485 WWRP 2009-1
- Nurmi (2003): Recommendations on the verification of local weather forecasts. ECMWF Technical Memorandum, no. 430
- Wilks (2012): Statistical methods in the atmospheric sciences, ch. 7. Academic Press

See also

http://www.cawcr.gov.au/projects/verification/

Appendix C of MET Documentation: http://www.dtcenter.org/met/users/docs/overview.php