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1 INTRODUCTION

Forecasts from regional hurricane models may suffer significant degradation when the structure of the
simulated storm departs markedly from the observed storm. To assess and identify the deficiencies that
lead to structural errors, it is necessary to develop alternative verification and diagnostic approaches that go
beyond the computation of errors and biases in track and intensity. The plethora of aircraft reconnaissance
and research flights taken each year offer an opportunity to make direct comparisons between the kinematic
and thermodynamic quantities in the observed storm and those in the modeled storm. In order to make
such direct comparisons, the observations must be compared within a framework that is consistent with the
model’s resolution and simulated storm location.

This report outlines the development and application of a code set to implement the synthetic profiles1

technique to evaluate the intensity and structure of simulated tropical cyclones (TCs) in operational and
retrospective runs of the Hurricane WRF model (HWRF). To accomplish this goal, the various National
Oceanic and Atmospheric Administration (NOAA) and Air Force Reserve (AFRES) flight level data for a
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through a storm along a generally straight path that passes near to or through the center along a radial. In the literature, the
term profile can also be used to refer specifically to an azimuthal-mean profile (such a profile could be the average of several
individual radial legs). This document does not use ‘profile’ in that sense unless specifically noted. Practically, this module has
been developed to construct synthetic radial legs, which consist of a flight segment that either begins or ends in or near the storm
center.
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given storm are first standardized into a common Network Common Data Format (NetCDF) file. Because
the simulated cyclone does not typically follow the actual path taken by the real cyclone, it is necessary to
translate the observational data into coordinates relative to the moving center of the actual storm and then
sample the model space along these transects in a frame relative to the center of the simulated storm. The
resulting synthetic radial profiles of the model’s simulated flight level and surface data can then be directly
compared with the observed 1-Hz flight level once an appropriate spatial smoothing is applied. Likewise,
the model’s simulated surface wind field can be sampled and compared with observed surface wind data
from Stepped Frequency Microwave Radiometer (SFMR). The resulting radial structure information can
then be used to diagnose model errors for storm size, inner core kinematic and thermodynamic structure,
and surface wind field distribution.

This final report describes the work that was undertaken to develop the synthetic profiles software
module and also examines the potential to use the synthetic profiles technique for advanced diagnostics and
verification. The report documents details of the approach that has been taken, shows tests from a suite of
comparisons generated for Hurricane Sandy (2012), and offers recommendations for future enhancements
and applications. This report is organized as follows. Section 2 describes how the flight level data are
processed to obtain the data in storm-relative coordinates. Section 3 provides details of the methods used
to implement the synthetic profiles technique. Results from Hurricane Sandy are presented in Section 4.
Some concluding discussion and recommendations for future work are given in Section 5.

2 PREPARATION OF FLIGHT LEVEL DATA

Extensive efforts have been exerted to prepare the observational flight level data for use with the syn-
thetic profiles approach. This work was undertaken both with the partial support of the Development
Testbed Center Visitor Program (DTCVP) and with funding support from the Risk Prediction Initiative
(RPI). This section describes characteristics of the flight level data and then discusses efforts to standardize
the multitude of data formats, conduct quality control (QC) measures of the flight level data, translate the
flight level data into a frame moving with the storm center, automatically parse the flight trajectories to
obtain high quality radial legs, and then store the output in a regular binned radius coordinate. This section
also details additional QC measures that have been undertaken on the SFMR surface data in order to get
useful radial legs of surface wind speed. The result of this multi-step process is a high quality research-
grade data set of flight level data, now known as the Extended Flight Level Data Set (or FLIGHT+). The
FLIGHT+ data set is suitable for a multitude of research uses including dynamical process studies, data
assimilation experiments, and wind risk applications. The FLIGHT+ data set may possibly be the most
enduring and scientifically useful product arising from both the DTCVP and RPI projects.

2.1 Characteristics of flight level data

Flight level data are typically obtained from two sources: the Air Force Reserve (AFRES) and NOAA’s
Aircraft Operations Center (NOAA/AOC). AFRES flights are normally conducted in support of operational
reconnaissance of storms that may pose a threat to land in the North Atlantic, Northeast Pacific, or Central
Pacific basins. As such, these flights normally follow a typical figure-‘4’ pattern at standard flight levels
(1500 ft, 925 hPa, 850 hPa, or 700 hPa). Occasionally, AFRES planes may participate in field campaigns in
other TC basins around the world (e.g., the Western Pacific). Most AFRES data are provided at a temporal
sampling rate of 10-seconds (during which time the plane flies approximately 1:2 km). Since 2010, AFRES
data have been provided at a 1-second sampling rate. Prior to 2004, some flights are only provided at a 30-
second sampling rate or occasionally at a 60-second rate. AFRES data are usually provided “as is” without
substantial QC measures. The data files are made available on the Hurricane Research Division’s (HRD)



web site. Especially in earlier years, it has been necessary to hand-edit some of the AFRES data files to
remove erroneous blocks of data. AFRES data come in ASCII text format. Approximately six formats have
been used over the period 1997-2013. On occasion, the original AFRES flight data are unavailable; in those
cases, operational data files may be substituted [e.g., the older “Minob” or more recent ‘High Density Obs’
(HDOBS) formats]. On other occasions, complex measures have been required to handle certain formatting
issues in the legacy data files (described in more detail in the next subsection).

Although NOAA Hurricane Hunter aircraft can also be tasked for operational reconnaissance missions,
NOAA flights are often conducted in support of the annual hurricane field program or other field campaigns.
Because the aims of such research flights often involve a different set of priorities than those of operational
missions, NOAA missions often fly at non-standard flight levels (e.g., near 650 hPa) to maximize the utility
of the airborne Doppler radar systems. Flight patterns may be irregular or contain many loops and cross-
legs to maximize radar coverage of the storm. NOAA aircraft data are normally provided at a sampling
rate of 1-second or 10-seconds, and are carefully QC’d by a flight meteorologist at AOC before being
made available on HRD’s web site. Since 2005, much of the NOAA flight data has been been provided in
Network Common Data Format (NetCDF) files. Changes in variable naming over the years pose challenges
to reading these data files, however the variable naming has become increasingly standardized. Prior to
2005, NOAA flight data are provided in ASCII text files. Like the AFRES formats, the NOAA formats
have also varied over the years: approximately eight data formats have been used from 1997-2013.

2.2 Standardization of flight level data

In order to provide a high quality data set of flight level data suitable for comparing to model data,
all available flight level data from 1997 to 2013 are standardized into a common data format. All of the
AFRES and NOAA flight data from each storm are read and combined into one self-describing NetCDF
file that uses a standardized set of variable names. When data were provided in English units, they have
been converted into metric units. This standardized combined file is termed the Level 1 (L1) data product.
One L1 data file exists for each storm in the data set. Generally, all variables that typically exist in both
of the AFRES and NOAA data files have been included in the common standardized file. Details about
the correspondence of variable names and units between the source data files and the standardized data file
are provided at: https://wiki.ucar.edu/display/flight/Correspondence+of+Variables+Between+Raw+
Data+Files+and+the+Common+Data+Format.

2.3 Quality control of flight level data

The RPI project has provided considerable support to QC the aircraft data in order to create a research-
grade data set that can be used for wind-risk applications. To ensure that each data file has been read
correctly, the flight level data for several key meteorological parameters have been plotted in earth-relative
coordinates. Fig. 1 shows an example of such a plot for flight level wind speed for the final flight before
Hurricane Sandy made landfall in New Jersey on 29 Oct 2012. Parameters that are plotted in this manner
include the flight level pressure, flight level temperature, flight level wind speed, surface wind speed from
the SFMR, and extrapolated surface pressure.2 Working as part of the NCAR/RPI project, Christopher
Williams checked each flight for artifacts or unrealistically high wind speeds. These checks are necessary
because the underlying source data files from the NOAA HRD Hurricane Research Division (HRD) some-
times contain formatting errors that can result in the data being read incorrectly. When corrections were
made to the source data files, a summary of changes has been noted on the dataset summary page: https://

2SFMR data have been routinely available on most flights since 2008. Flight level pressure is not available for many AFRES
flights prior to 2005.
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wiki.ucar.edu/display/flight/Summary+of+Flight+Level+Data+Processing+by+Storm (additional de-
tails of changes are described on the individual storm pages linked from that page). The resulting cleaned
files have been sent to HRD to update the data files on their web page. Particular attention has been taken to
ensure that the wind speed data are not affected by artifacts that lead to erroneously high maximum values.
When the sources of such artifacts are found, the source data files have been edited to remove the offending
data points. Other types of read errors have also been corrected when possible. A short description of some
of the issues encountered and the subsequent actions that were taken are given below in Table 1.

2.4 Quality control of SFMR surface wind speed data

In the course of conducting quality checks of the flight level data, the NCAR/RPI Project Principal In-
vestigator (PI, Jonathan Vigh) also created plots of the surface wind speed data from the Stepped Frequency
Microwave Radiometer (SFMR). A vexing problem was discovered, in which numerous artifacts are present
in the SFMR-retrieved surface wind speeds. Upon translation into storm-relative radial legs, these artifacts
manifest as spikes (often exceeding 100 m s�1) or ‘drop-outs’ in which the SFMR-reported wind speed
drops to zero or an unrealistically low value. The causes of these artifacts are not readily apparent, however,
there do seem to be some systematic causes. Some of these systematic causes include:

� SFMR retrievals when the aircraft was flying over shallow water,

� retrievals when the aircraft was over land, and

� retrievals when the aircraft was rapidly changing its heading (e.g., turning at the outer termination
points of radial legs).

To examine the sensitivity to the each of these factors, the PI created plots of SFMR wind speeds overlaid
upon bathymetric depth obtained from the ETOPO1 data set Amante and Eakins (2009). This allows one
to evaluate how the quality of the retrieved wind speed decreases as the depth decreases as well as to
visually ascertain where the other artifacts occur with respect to the flight pattern. Three cases were selected,
comprised of flights where the TC travelled over regions of shallow water adjacent to complex coastlines:
Ike near Cuba (2008, see Fig. 2), Fay near the Florida coast (2008, see Fig. 3), and Irene over the Bahamas
(2011, see Fig. 4).

Figure 2 shows retrieved SFMR wind speeds for Ike (2008). The retrieved wind speed values are
obviously erroneous over land, and they are also suspect in the region between the main island of Cuba and
the Isle of Youth where the water depths are very shallow (< 5 m). Erroneous retrievals over land are to be
expected since the physics behind SFMR retrieval require that an ocean surface be present. Faulty retrievals
over shallow water are also to be expected. This is due to the following: the SFMR senses the wind speed by
measuring the differences in microwave radiation upwelling from the ocean surface at various frequencies.
Since the emission of microwave radiation is highly dependent on the amount of sea foam present due to
breaking ocean waves, areas of shallow water depth lead to waves that have different shoaling and breaking
characteristics than waves in the deep ocean and hence, the SFMR retrieves a wind speed which is incorrect.
This shallow-water-retrieval effect cannot be clearly seen in this example however, since the western leg
crosses from deep water into very shallow water (< 2 m depth) without much apparent change in retrieved
wind speed. The wind speeds have large errors near the storm center in the shallow water regions in this
case, which may have something to do with the broad directional spectra of the wave field near the wind
center of the TC. Additional artifacts can be seen at the leg turn points, as indicated by small white line
segments. In these regions, the retrieved wind speed incorrectly decreases to very low values because the
SFMR instrument is not pointing to nadir – when not pointing straight downward, another assumption of
the retrieval algorithm is violated, since the radiation is now arriving at the plane’s location after following
a slanted path. Finally, additionally questionable wind speed retrievals can be seen on the flight segment
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Figure 1: Flight level wind speed plotted in earth-relative coordinates for the final flight before Hurricane
Sandy made landfall in New Jersey. The flight began at 15:25 UTC on 29 Oct 2012 and ended at 01:01
UTC on 30 Oct 2012 – near the time that Sandy made landfall. Flight level wind speed along the flight
trajectory is indicated by the color of the line; the black line shows the path taken by the center the storm as
determined by the wind-center-finding method of Willoughby and Chelmow (1982).



Figure 2: Retrieved SFMR surface wind speeds without any additional quality control measures (lines
colored by retrieved wind speed) plotted atop bathymetric depths (color shading) from the ETOPO1 data
set for Ike (2008). Note that the scale for bathymetric is highly nonlinear in order to emphasize gradients
in shallow water. The black line shows the track of the storm, as determined by wind centers obtained from
the Willoughby-Chelmow center finding method.



Table 1: Example of quality control issues and actions taken during the visual checks of the earth-relative
flight level wind data. Table by Christopher Williams, courtesy of the RPI project.

Summary of Problems Encountered with Data Files and Measure Undertaken to Correct
Issue Action
Unrealistically high flight level wind speed values Inspect data file. If unreasonable, change wind speed value to missing value

(e.g., 80 m s�1 in a tropical storm (-99); if many values are bad, then remove block of data with high wind
or weak hurricane) speeds

Odd flight duration/date/time stamp non-sequential Change date/time stamp of affected lines or delete block of data if duplicate
or time stamp jumps time information is present

Unrealistic latitude/longitude values or location jumps Change lat/lon to correct values (if apparent) or delete block of data with
bad lat/lon values

Data file missing a column in certain lines Delete block of data with missing column data

Data file has extra 1’s in a column right after the date, Clean using clean˙bad˙column.ncl to remove superfluous 1’s
causing mis-translation of subsequent columns

north of the island, where unrealistically high values are present far from the storm center, along with
several areas with rapid variations over a short distance. The maximum retrieved SFMR wind speed for this
flight was 157 m s�1.

Figure 3 shows a similar plot for Hurricane Fay (2008). In addition to the artifacts noted for the previous
case, additional artifacts are present including unrealistically high wind speeds regardless of water depth
and abnormal variability of wind speeds just east of the southeast Florida coast. This first additional artifact
suggests that the SFMR instrument may have been poorly calibrated for this flight, leading to questionable
retrievals for the entire flight. The latter artifact may be related to the rapid current and associated variations
in wave characteristics and surface temperatures of the Gulf Stream. The maximum retrieved SFMR wind
speed for this flight was 140 m s�1.

Figure 4 shows a similar plot for Irene (2011). Compared with the previous two cases, this case looks
fairly well behaved, with the normal artifacts over land and at the turn points. The effect of shallow water
is not readily seen here. The maximum retrieved SFMR wind speed for this flight was 88:5 m s�1.

The presence of pervasive artifacts in the SFMR-retrieved wind speeds represents a significant obstacle
to the goal of comparing the observations of surface wind speed to those of the model. Thus, consider-
able effort has been undertaken to devise methods to screen out these erroneous wind speed values while
preserving the high quality surface wind speeds. A data quality mask has been implemented at the initial
processing stage to account for known causes of retrieval errors. Th procedure for setting this data quality
flag is described in the following paragraphs.

At the beginning of the QC process, the SFMR data quality flag is assigned a value of zero for all points
along the flight trajectory. A value of zero indicates that no QC screening criteria have been applied and thus,
the quality of the retrieved wind speed is expected to be comparable to the quality of retrievals over deep-sea
conditions. Next, a water depth criterion is used to increment the value of data quality flag by one for each
location in which the water depth is less than the given threshold. This is accomplished by retrieving the
bathymetric water depth from the ETOPO1 dataset for each point along the flight trajectory. The ETOPO1
data set has a horizontal grid spacing of approximately 1:3 km, which closely matches the characteristic
horizontal scale of the surface footprint of the SFMR instrument when flying at typical reconnaissance
altitudes (e.g., 850 and 700 hPa). For each point along the flight trajectory, the depth is retrieved for the grid
cell closest to the point directly beneath the plane’s location. Since slight variations in the plane’s roll angle



Figure 3: As in Fig. 2, but for Hurricane Fay (2008).



Figure 4: As in Fig. 2, but for Hurricane Irene (2011).



could result in the SFMR footprint falling on nearby ocean points rather than the point directly beneath
the plane, water depths are also retrieved for the nearest grid cells north, east, south, and west of the point
directly beneath the plane. If the shallowest of these five depths is not deeper than 5 m, the data quality
flag is incremented by a value of unity. This effectively masks out most artifacts related to shallow water.
Since the ETOPO1 dataset also includes altitude above sea level for land, this criterion also screens out any
retrievals that were made over land.

The second QC criterion checks whether the plane was rapidly changing direction at each point along
the trajectory. Since planes typically bank during turns, a rapid change in direction is a good indication that
the SFMR was not pointing at nadir. The absolute rate of change in the plane’s direction is computed by
taking a one-point backward difference of true heading at each point along the flight trajectory, and then
dividing by the elapsed time between points. For any trajectory points for which the plane’s heading was
changing by more than two degrees per second, the value of the data quality flag is incremented by a value
of two.

The third QC criterion checks whether the plane was rolling at each point along the trajectory. If the
value of the roll angle exceeds two degrees, then the data quality flag is incremented by a value of four.3

Because the data quality flag values are additive and incremented by distinctly different amounts, it is
possible to decode the data flag value to determine which combination of factors resulted in the point being
flagged to indicate potentially poor quality.

The results of the QC’d SFMR wind speeds are shown in Figures 5-7. Fig. 5 illustrates the effects of
these QC procedures – one can see that the data quality flag does indeed mask the wind speeds over land
and shallow water, resulting in the elimination of many of the artifacts. Additionally, the rate-of-change/roll
angle criteria have resulted in the elimination of low wind speeds at the turn points. This has also reduced
some of the spurious variability in the northern leg, which was apparently due to the plane rolling during
relatively straight flight (such rolls can occur due to turbulence). Fig. 6 shows that these QC criteria are
not able to correct the issue of high variations in retrieved wind speed over the Gulf Stream, and they also
do not correct the general problem of poor calibration. Fig. 7 shows that a number of short segments were
screened by the roll angle criterion even during segments of straight flight.

To further illustrate the effectiveness of the QC measures, panel plots of the radial legs are shown for
these three cases in Figs. 8-10. Each panel contains wind speed data translated into radial legs relative to
the storm center. The top panel shows the flight level wind speed, the middle panel shows the non-QC’d
SFMR wind speeds, and the bottom panel shows the QC’d SFMR wind speeds. All of the radial legs in this
plot were flown at 700 hPa.

Figure 8 shows the panel plot for Ike. For this case, the QC measures are able to eliminate most of
the spurious spikes and dropouts. The SFMR surface wind speeds are generally higher than the flight level
wind speeds at all radial points; this suggests that the SFMR had poor calibration for this flight. The QC
measures result in a reduction of the maximum SFMR wind speed from 157 m s�1 to 119 m s�1, while the
minimum SFMR wind speed has increased from 0:0 m s�1 to 32 m s�1.

Figure 9 shows a similar panel plot for Fay (all of the radial legs in this plot were flown at 850 hPa). In
this case, the QC measures are able to eliminate nearly all of the spikes upward, but a couple of prominent
spikes downward remain. As in the previous example, this flight also suffered from poor calibration of the
SFMR instrument, with unrealistically high SFMR wind speeds occurring at all radii. The QC measures
result in a reduction of the maximum SFMR wind speed from 140 m s�1 to 92 m s�1; this is still unrealis-
tically high, but apparently does not occur in any of the good radial legs. The minimum SFMR wind speed
remains unchanged at 0:0 m s�1.

3Many flights from the 1990s and early 2000s do not contain the roll angle parameter, so the previously described rate of
directional change criterion serves as a useful proxy for determining when significantly non-zero roll angles may have occurred.



Figure 5: As in Fig. 2, but now showing the SFMR wind speed values that have undergone QC measures to
screen out values over land, shallow water, or when the plane was turning rapidly.



Figure 6: As in Fig. 3, but now showing the SFMR wind speed values that have undergone QC measures to
screen out values over land, shallow water, or when the plane was turning rapidly.



Figure 7: As in Fig. 4, but now showing the SFMR wind speed values that have undergone QC measures to
screen out values over land, shallow water, or when the plane was turning rapidly.



Figure 8: Panel plot showing the wind speeds for all of the radial legs in a particular flight for Ike (2008).
Parameters shown are: flight level wind speed (top), non-QC’d SFMR wind speed (middle), and QC’d
SFMR wind speed (bottom). All radial legs in this plot were flown at 700 hPa.



Figure 9: As in Fig. 8, but for Fay (2008). All radial legs in this plot were flown at 850 hPa.



Figure 10 shows the panel plot for Irene (all of the radial legs in this plot were flown at 700 hPa). In this
test case, the QC measures eliminate all of the spikes and all prominent dropouts. One minor downward
spike remains, but overall the SFMR radial legs of surface wind speed are very clean and correspond well
with the radial legs of flight level wind speed. The QC measures reduce the maximum SFMR wind speed
from 88:5 m s�1 to a realistic 46:8 m s�1, while the minimum SFMR wind speed increases from 0:0 m s�1 to
9:8 m s�1 (also realistic). This case suggests that so long as the SFMR instrument was properly calibrated,
it may be possible to obtain high quality radial legs of SFMR wind speed that are suitable for fitting to a
parametric wind model.

2.5 Automatic parsing of radial legs

The next step in the data processing is to translate the flight level data into storm-relative coordinates.
In order to do this, a detailed track of the storm center locations is required. HRD accomplishes this by
running the wind-center-finding method of Willoughby and Chelmow (1982). The full method determines
the wind center of the storm using lines normal to the wind at the aircraft’s location and then through
iteration, chooses the center that minimizes a cost function based on both wind and pressure information.
The resulting wind centers are then fitted to a cubic spline under tension, resulting in a high quality track of
the storm’s wind centers in time. HRD’s process for creating wind center tracks uses the first-guess centers
from the Willoughby-Chelmow method, but then rather than iterating, a scientist manually picks out the
centers that look reasonable and then a spline is fitted to produce the track. The end result is a file that
contains the wind centers every two minutes for the times when aircraft were in the storm. This project
downloads these wind center ‘.trak’ files from HRD and uses those data to translate the flight level data into
storm-relative coordinates by subtracting the geographical coordinates of the wind centers from those of
the coordinates of the flight level trajectory. The motion of the storm center can also be subtracted from the
wind speed, resulting in wind data that are in a frame moving with the storm center. Finally, the wind data
are decomposed into tangential and radial wind components.

Once the data are in storm-relative coordinates, an automated algorithm is used to determine which parts
of the flight trajectory correspond to “good” radial legs (i. e. subsets of data that represent a relatively direct
transact through the storm center). The algorithm accomplishes this task by means of a filtering operation,
in which all points that do not correspond to inbound or outbound points of a radial leg are masked out by
setting accompanying data flags to ‘missing’. In brief, three criteria are applied in this masking operation:
(a) the distance from the storm center, (b) the radial motion of the plane, (c) and the direction that the plane is
heading. First, all points that are more than 400 km from the storm center are eliminated from consideration
to reduce the scope of the search (normally, radial legs initiate and terminate approximately 200 km from the
storm center). Then, a radial motion criterion is applied by examining whether the aircraft’s distance to the
center is increasing or decreasing in time. Points along the flight trajectory where the aircraft’s distance to
the center is decreasing in time are marked as potential starting points for an inbound leg. Similarly, points
at which the platform’s distance to the center are increasing in time are marked as potential starting points
for an outbound leg. All other points are eliminated from consideration for the starting points of inbound
or outbound radial legs. Then, a directional criterion is applied by using the angle difference between
the plane’s track (the direction in which the plane is moving) and the radial that passes through the storm
center. All points at which the plane is tracking in a direction that is within ˙35 ı of the storm center are
included as potential starting or stopping points for the radial legs; all other points are eliminated. Because
the plane does not always pass through the direct center, some leeway is given in applying the radial motion
and directional criteria. These are not applied when the plane is closer than 30 km (for the radial motion
criterion) or 25 km (for the directional criterion) of the storm center.

Once all points that do not correspond to inbound or outbound radial legs have been screened out,
the beginning and ending times of candidate radial legs are recorded. Then each leg is screened using



Figure 10: As in Fig. 8, but for Irene (2011). All radial legs in this plot were flown at 700 hPa.



additional criteria to see if it should be included as a ‘good’ radial leg. These additional criteria are: (i) that
the continuous leg be at least 45 km in length, and (ii) that the plane pass within 25 km of the storm center.
If both criteria (i) and (ii) are not satisfied, the leg is not included as a ‘good’ radial leg. Fig. 11 shows
the result of the automatic parsing for the final flight before landfall in Hurricane Sandy. For this case, the
algorithm correctly identifies the legs that are relatively straight and which pass near the storm center. Legs
that are too short, that have too many directional changes, or which are not headed toward or away from
the storm enter are correctly screened out. Overall, the algorithm correctly identifies good radial legs with
an accuracy rate of about 99%. The parsing metadata is stored in a file for internal use, termed the Level 2
(L2) data product.

2.6 Radial binning

Once the ‘good’ radial legs have been identified, it is a rather simple exercise to take the parsing
metadata from the Level 2 file for each storm, translate all of the earth-relative data into storm relative
data, and then store the data into logical blocks that correspond to each radial leg. To allow ease of use
in further applications, such as synthetic profiles, the data are then linearly interpolated (e.g., ‘binned’)
from time/distance-from-the-center space into radius space using a common radial grid that starts at the
storm center and extends outward to 700 km at 100-m grid increments. Given an assumed ground speed of
115 m s�1, for 1-second data this results in a little less than one time point per radial point. For lower sam-
pling rates, the linear interpolated (i.e., binned) data offers a very faithful radial representation of the data
in the time domain. At a 1-second sampling rate, the linear interpolation may underestimate the maximum
wind speeds of the most peaked wind profiles by a very small amount that should be less than the inherent
uncertainty of the observations. To illustrate the effect of binning, Fig. 12 plots the binned (red curve) and
unbinned (black curve) data for a radial leg in Hurricane Wilma on 19 October 2005.4 As the reader can
see, there are only a few places where any discernible difference can be seen between the two curves, and
any differences are likely less than 0:5 m s�1.

An additional QC measure is applied to the ‘good’ radial legs at this stage. Because it is possible that
the plane may climb or descend during a radial leg (especially during the final leg leaving the storm), it is
important to exclude any portions of the radial leg that are at a substantially different pressure altitude. This
is accomplished by computing the average pressure of the leg within 25 km of the center of the storm. If
the flight level pressure subsequently varies by more than 10 hPa from this value, the remainder of the leg is
terminated (remaining values are set to _FillValue from this radius point outward). This QC criterion
assures that changes in the flight parameters are not due to large altitude changes of the measuring platform.
Fig. 13 shows the radial legs that result for the final flight before Sandy’s landfall in New Jersey. Besides
providing a qualitative overview of the radial leg data, the third panel of this 4-panel plot demonstrates
that the radial leg truncation QC measure has indeed correctly terminated the northeast leg of Sandy. The
earth-relative plot of the flight level pressure (not shown) indicates that the plane descended from 700 hPa
to 850 hPa during this outbound leg.

2.7 Extended Flight Level Data Set

The resulting Extended Flight Level Data Set (or FLIGHT+) covers nearly all TCs that have been flown
in the North Atlantic, Eastern Pacific, Central Pacific, and Western Pacific basins from 1997-2013. The
data set format has been designed to enable a wide range of industry and research uses. The data set will

4The unbinned data extend out to larger radius because the binned data are subject to leg termination criteria if the pressure
varies by more than 10 hPa from the average pressure of the first 25 km of the leg.



Figure 11: Flight trajectories in storm-relative coordinates for the final flight before Hurricane Sandy made
landfall in New Jersey. Portions of the flight trajectory identified as ‘good’ radial legs are shown in red. All
other flight portions are shown in blue.



Figure 12: Comparison between the binned (red curve) and unbinned (black curve) data for a radial leg in
Hurricane Wilma on 19 October 2005. In order to ensure that only data on a quasi-constant flight pressure
surface are shown, the binned data are terminated if the flight level pressure varies more than 10 hPa more
than the average flight level pressure near the storm center. Thus, the binned data end at about 260 km radius
while the unbinned data continue to larger radius. The very close correspondence between the binned and
unbinned data show that the linear interpolation does not appreciably change the wind speed values.



Figure 13: ‘Good’ radial legs for the final flight before Hurricane Sandy made landfall in New Jersey. Panels
from top to bottom: (a) flight level wind speed, (b) flight level temperature, (c) flight level pressure, and (d)
extrapolated sea level pressure. Each radial leg is represented using the same color in each panel.



be publicly released to the research community in 2015.5 Please check the FLIGHT+ page on the Tropical
Cyclone Data Project (TCDP) web site for updates on the data set release schedule: http://verif.rap.ucar.
edu/tcdata/flight/. Detailed graphical plots of the flight level data for each storm are already available at:
http://verif.rap.ucar.edu/tcdata/flight/applications/. These plots include the earth-relative data, graphical
summaries of the storm-relative parsing, and plots of the radial legs. The data set files include all of the
typical navigational and meteorological parameters that are commonly available in both the AFRES and
NOAA source data files.

3 APPLICATION OF THE SYNTHETIC PROFILES TECHNIQUE

With the hard work of processing the aircraft data finished, the trajectories flown in the real storm can
now be used to define synthetic trajectories in the model space. This section describes the implementation
of a module to construct synthetic profiles from fields of the operational Hurricane WRF (HWRF) model,
although the technique can be applied to any numerical weather prediction output (e.g., global models, other
regional hurricane models). This section describes the basic approach to applying the synthetic profiles
technique, how the model-observation matching is accomplished, the methodology used to sample the
model fields to create the synthetic profiles, and further details about the module code set.

3.1 Basic Approach and Philosophy Guiding the Application of Synthetic Profiles

The basic approach used to develop this module has been inspired by the work of Uhlhorn and Nolan
(2012), who used synthetic profiles to study some theoretical aspects of the likelihood that an observing
system will sample the highest wind speed as a storm translates past. Uhlhorn and Nolan were able to run
a WRF-based nature simulation at extremely high temporal resolution (e.g., 10 s) for part of their idealized
study, with hourly snapshots outside of the intensive study period. However, since the current implementa-
tion seeks to apply the technique to operational model output, we must work within the constraints of what
is available in the target model, which is the operational HWRF. In real-time HWRF runs, the output is
stored every three hours. Each of these output files represents an instantaneous snapshot (or ‘time slice’) for
certain fields (the files also contain fields of accumulated quantities such as precipitation). While HWRF
could be rerun at very high temporal frequency, it is not practicable to store such large volumes of data.
As it turns out, it is not necessary either. If the simplifying assumption can be made that the movement of
small-scale elements in the flow of the hurricane can be neglected during the sampling period, we can then
sample the given model time slice instantaneously as if the plane were able to fly the entire radial leg in one
instant. This assumption should be valid so long as the period of time from the actual radial leg is relatively
small, and the small scale features rotating around the storm are of relatively small amplitude and/or do not
have strong gradients in the parameter of interest. When the plane is flying in the actual storm, it is typically
flying at 115 m s�1, which means that it flies a standard 200 km radial leg in approximately 30 min. While
elements can certainly rotate a substantial distance around the eyewall of a hurricane in that amount of time,
the effect of such features on the data gathered in the real storm can be treated as noise if the amplitude of
variations is low enough. As will be shown in the results, the variability in the actual radial legs is fairly
small, which suggests that the amplitude of these features is normally quite small. Thus, our assumption is
valid and we are justified in sampling the model time slice instantaneously.6

5The dataset can be made available to friendly collaborators for non-commercial research purposes in advance of the public
release.

6As a side note, Uhlhorn and Nolan (2012) used four-dimensional interpolation (where the fourth dimension is time) during
the part of their study in which the model output was stored at hourly intervals. The effect of interpolating in time between hourly
slices will tend to smooth out such finescale features, preserving only the gross features of the vortex. So in order to actually
sample the small-scale variability, one must sample the model at very high temporal frequency which is not practical unless the

http://verif.rap.ucar.edu/tcdata/flight/
http://verif.rap.ucar.edu/tcdata/flight/
http://verif.rap.ucar.edu/tcdata/flight/applications/


3.2 Model-Observation Matching

In order to construct synthetic profiles, it is first necessary to determine which model time slices match
available observations. In the current version of the module, this matching is done at the storm-level, as
follows. First, a list is created of all of available model cycles for this storm. Then the module loops over
each model time slice for each cycle, starting at the analysis time (t D 0) and checking each subsequent
file at 3-hourly intervals to the end of that particular model simulation. The valid time for each time slice
is constructed and then checked against all available observed radial legs for the storm. Any observed
radial legs whose mid-point time falls within ˙1:5 h of the valid time of the particular model time slice are
considered a match, and are stored for later reference.7

3.3 Sampling Methodology for Creation of Synthetic Profiles

Once the list of all radial legs that match the available model time slices has been created, the pro-
gram then loops through each time slice and reads the three-dimensional field of interest from the HWRF
simulation (e.g., wind speed, temperature, etc.). These fields have already been post-processed into a reg-
ular lat/lon grid at 42 regular pressure levels with 25 hPa spacing in the lower troposphere. The program
also reads the hourly track file in the ‘a-deck’ format of the Automated Tropical Cyclone Forecast (ATCF)
system (Miller et al. 1990; Sampson and Schrader 2000). This track file is generated by the HWRF post-
processing using the GFDL vortex tracker (Tallapragada et al. 2014).8 For purposes of visualization later
on, the two-dimensional field at the closest model pressure level to the average pressure of the radial leg is
stored for future reference.

Next, the storm-relative coordinates of the observed flight trajectory are translated to the earth-relative
(lat/lon) coordinates centered on the model’s simulated storm. These lat/lon coordinates then form the
basis for the synthetic trajectory. The code samples along this trajectory point-by-point, first interpolating
horizontally at the nearest pressure levels above and below the pressure of the trajectory, then interpolating
vertically between the two horizontally-interpolated points.9 The resulting synthetic radial leg wind speed
data are then stored in arrays. Currently, the module only creates synthetic radial legs of the earth-relative
flight level wind speed, however it will be relatively easy to add additional flight level parameters, as well as
surface wind speed. It would also be relatively easy to compute storm-relative winds for comparison with
the storm-relative wind in the real storm.

It is always possible that two or more aircraft may have flown simultaneously in the storm (and at
multiple levels), so the module has been designed to handle this multiple-aircraft scenario.10 This leads
to some rather complex data structures. When all of the matching time slices have been processed thusly,
the synthetic radial legs are written out to a NetCDF file along with the associated metadata and the stored

sampling is done on-line while the model runs. Doing the sampling online would preclude real-time applications however, since
the exact flight patterns cannot be known with certainty in advance.

7Note: the threshold of 1:5 h has been chosen to ensure that each available radial leg will get matched if a model time slice exists
for that time window, while also preventing any radial leg from being matched with more than one model time slice and hence being
double counted. If this module is used for verification purposes in the future, it would be important to prevent double-counting, so
setting the match window at the greatest possible time while avoiding double counting seems to be the best choice.

8The program also has the capability to read the High Frequency Tropical Cyclone Forecast (HTCF) format, however since
that data type only includes the lat/lon pairs of the innermost mesh rather than the simulated storm center, it is not very useful for
synthetic profiles.

9Dennis Shea recommended this two-step interpolation method, rather than developing a new routine for three-dimensional
interpolation. Because NCL already has existing routines to do this type of horizontal and vertical interpolation, it was easy to
implement this two-step interpolation method. The accuracy of this method should be superior to, or comparable to the result from
basic three-dimensional interpolation.

10There is no actual requirement that the observing platform be aircraft – the technique could be applied to other types of
remotely sensed data as well.



model fields nearest to the average pressure level of each radial leg.

3.4 Further Details about the Module Code Set

The module code set has been prototyped in NCAR Command Language (NCL 2014), a versatile high-
level interpreted programming language. At the top level, the code set includes a driver script (written in
NCL) that is capable of constructing a list of desired jobs and then submitting batch queue scripts in a su-
percomputing environment. The top-level driver can also run individual jobs in sequence on a workstation.
Once the batch queue script for a job has been constructed and submitted, an intermediary script (written
in bash) is called to initialize the various log files and check that key paths are present. This intermediary
script then invokes the appropriate run-level program (written in NCL). A run-level NCL program exists for
each of the seven steps that are necessary to process the flight level data and then create and visualize the
synthetic radial legs. The steps involved in creating synthetic radial legs are summarized as follows:

� Step 1: Standardization of earth-relative aircraft data (output written to an internal L1 data file for
each storm),

� Step 2: Generation of plots of the earth-relative data for QC,

� Step 3: Parsing of the observed aircraft data into ‘good’ radial legs (output written to an internal L2
data file for each storm),

� Step 4: Translation of the aircraft data into storm-relative coordinates and binning of radial leg data
(output written to an L3 data file for each storm),

� Step 5: Visualization of the aircraft radial leg data,

� Step 6: Find matching model time slices that correspond to available observed radial legs and then
sample the model space to derive synthetic radial legs,

� Step 7: Generation of plots comparing the flight trajectories in the real storm to those in the model
storm and comparing the resulting synthetic radial legs.

In order to expedite generation of the entire FLIGHT+ data set, steps 1-4 were run on the Yellowstone
Supercomputer CISL (2014), while steps 6 and 7 were run on a local workstation.11

4 RESULTS

The synthetic profiles module has been tested on a set of fourteen retrospective simulations for Hur-
ricane Sandy (2012) that were run by the National Centers for Environmental Prediction Environmental
Modeling Center (NCEP/EMC) using the T14C test configuration of HWRF.12 Only the 00Z and 12Z
model cycles for Sandy have been used in this test, mainly due to hard disk storage space considerations.
The model cycles start with the 00Z on 23 October and end with the 12Z cycle on 29 October. There are two
dimensions in which one can browse the resulting output. One can hold the model cycle constant, varying
the lead time to see how the simulated vs. real structures evolved for that one model cycle, or one can fix
the verifying period and compare how different model cycles simulated the storm for that particular time
period. We will show examples from both of these output dimensions.

11All of the steps are of a small enough computational size, however, that they can be run on a heavy-duty workstation if
necessary.

12The T14C configuration is similar to the configuration of HWRF that is being used for real-time operational runs during the
2014 season.



4.1 Results for a given model cycle, varying forecast lead time

Figure 14 shows the first available model/observations match, which is for the model cycle analyzed at
00Z on 23 October. The first model time slice that matched available radial leg(s) was the 12-h forecast,
valid at 12Z on 23 October. Figure 15 shows the comparison between the real storm and the HWRF-
simulated storm for each of the radial legs (magenta curves) shown in Figure 14. At this time, the real
storm was still quite weak and disorganized, while HWRF shows a more organized and intense storm with
a pronounced wind maximum. While one could qualitatively infer the conclusions of the previous sentence
through careful thought, taking into account the analyzed intensity of the real storm and comparing this
with HWRF, the comparison between the synthetic radial leg wind speed and that of the real storm nicely
illustrate the radial structure and dramatic difference between the real and simulated storms. While HWRF
has a radius of maximum winds (RMW) of approximately 60 km, the real storm has a possible inner RMW
of less than 10 km in one radial leg, and an outer RMW of at least 200 km. Note that the actual radial legs
have not had any smoothing applied yet, but nevertheless, the HWRF wind structure is also much smoother
than that of the real storm.

Moving to a later lead time, even more dramatic differences can be seen between the real and simulated
storms. Figure 16 shows the radial leg comparisons for the same model cycle, but now at forecast hour 27.
For this time slice, there were four matching radial legs, and these legs provide good azimuthal coverage
of the storm. The HWRF-simulated storm has rapidly intensified in the intervening 15 h, with radial leg
maxima of 50 � 55 m s�1 and RMW of 45 � 60 km. Meanwhile, the real storm had also intensified, but not
nearly as much, with radial maxima of 15 � 30 m s�1 and RMW ranging from 65 � 120 km.

Figure 17 shows the radial leg comparisons for the 51-h forecast from that same model cycle. By
this time, the real Sandy was a hurricane and displayed a mature TC structure with peaked inner core
wind maxima. For the radial legs shown in the lower two panels, the HWRF-simulated storm displayed a
qualitatively similar radial wind structure, however for the upper panels, very large differences can be seen.
Indeed, the HWRF-simulated radial maxima are almost completely out of phase with the wind maxima in
the real storm. Figure 18 shows the map-view of the trajectories plotted atop the model field; this shows
that the simulated storm had a strong wavenumber-1 asymmetry with a quasi-elliptical eye feature. The real
radial wind structure hints at a similar asymmetry in the real storm, but not to the degree of the simulated
storm. This may be an example where the HWRF model generated some sort of eyewall or inner core
instability (e.g., algebraic instability, Nolan and Montgomery 2000) whose magnitude was much stronger
than the instability in the real storm.

The final match from the model cycle initialized at 00Z on 23 October 2012 comes at a forecast lead time
of 120-h. Figure 19 shows the comparison between the real and synthetic trajectories at this time. This plot
illustrates nicely the capability of the synthetic profiles technique to accurately sample the simulated storm
even when the underlying model run has very large track error. Here the simulated storm has incorrectly
turned right, while the actual storm is moving about the apex of a curve that eventually took it back toward
land.

4.2 Results for a given verifying time point, varying model cycle

Now we turn our attention to the model cycles initialized closer to landfall. We focus on the verifying
period of 18Z on October 29, which was just 6 h prior to landfall in southern New Jersey. Figure 20 shows
the 42-h forecast that corresponds to the verifying target time. Likewise, Fig. 21 shows a 30-h forecast
verifying at the same time, Fig. 22 shows an 18-h forecast verifying at that time, and Fig. 23 shows the 6-h
forecast verifying at that time. In the first plot of this series (Fig. 20), the simulated storm is approximately
300 km from the actual storm and is extremely large, encompassing nearly the entire flight pattern that was
flown. The simulated storm has two wind maxima: a more classical tropical inner core wind maximum



Figure 14: Comparison between the actual flight trajectory in the real Tropical Storm Sandy (grey curves)
and the simulated trajectory that has been navigated onto the center of the HWRF-simulated Sandy (pink
curves) for the 12-h forecast from the model cycle initialized at 00Z on 23 October 2012. The portions of
the trajectory that correspond to the synthetic radial legs are also shown (magenta curves). For reference,
the plot also displays the wind center track of the actual storm (black curve), the corresponding track of
the HWRF-simulated storm (red curve), the position of the real storm at the analysis time (white dot), the
position of the simulated storm at the analysis time (red dot), the position of the real storm at the time slice
valid time (white dot), and the position of the simulated storm at the time slice valid time (black dot). The
model’s simulated wind speed is shown (color contours) at the pressure level nearest that of the average
pressure of the first radial leg. While only radial legs whose midpoint times fell within ˙1:5 h of the
model time slice are shown, the full flight trajectories are shown for a time window of ˙2 h to completely
encompass any radial legs near the edge of the time window.



Figure 15: Comparison between the observed radial structure of flight level wind speed in the real storm
(black curves) and the synthetically-derived flight level wind speed in the HWRF-simulated storm for each
of two radial legs that fell within the match window for the 12-h forecast from the model cycle initialized
at 00Z on 23 October 2012.



Figure 16: Comparison between the observed radial structure of flight level wind speed in the real storm
(black curves) and the synthetically-derived flight level wind speed in the HWRF-simulated storm for each
of two radial legs that fell within the match window for the 27-h forecast from the model cycle initialized
at 00Z on 23 October 2012.



Figure 17: Comparison between the observed radial structure of flight level wind speed in the real storm
(black curves) and the synthetically-derived flight level wind speed in the HWRF-simulated storm for each
of two radial legs that fell within the match window for the 51-h forecast from the model cycle initialized
at 00Z on 23 October 2012.



Figure 18: Plan view of synthetic trajectories for the 51-h forecast from the model cycle initialized at 00Z
on 23 October 2012.



Figure 19: Plan view of synthetic trajectories for the 120-h forecast from the model cycle initialized at 00Z
on 23 October 2012.



and a baroclinically-enhanced outer wind maximum. The outer wind maximum has a distinct oblong shape
in the outer wind field – all of these features bear some resemblance to the actual storm at an earlier time
period. The 30-h forecast (Fig. 21) is much closer to the actual storm position and still has an enormous
outer wind band (perhaps slightly smaller than the 42-h forecast) as well as an inner core maximum. The
orientation and degree of ellipticity of the outer wind band have changed compared to the forecast initialized
12 h earlier. Whereas the 42-h forecast had the strongest winds in the southeast quadrant, the 30-h forecast
has winds of similar strength in both the southeast and northern quadrants. The inner wind maximum is
also stronger in the 30-h forecast. The 18-h forecast (Fig. 22) is also near the actual storm position and has
an even stronger inner wind maximum with less distinction from the outer wind band to the north, however
the outer band is more oblong to the east and west. The 6-h forecast (Fig. 23) is actually farther from the
location of the actual storm, does not have a distinct inner wind maximum, and has significantly stronger
winds in the northern semicircle of the outer wind band. The radius of that outer wind band appears to be
smaller than the forecasts at greater lead time. At this time, the real storm was transitioning to post-tropical
and the inner wind core was rapidly losing definition. The 6-h forecast seems to be the best match to our
understanding of Sandy’s structure, at least from this qualitative examination of the sequence of forecasts
of the wind field.

How well does this qualitative view hold up when using the more quantitative information offered by
the synthetic radial legs? Figures 24-27 show the comparisons for the observed vs. synthetic radial legs
for this set of four forecasts. Firstly, note that the two radial legs shown in the middle of the 4-panel plot
are relatively well simulated by HWRF in all four forecasts. These legs correspond to the legs flown in
the east and northeast quadrants of the storm. Because HWRF’s inner core wind maxima in this run are
oriented north-south, the northeast leg does not sample this maximum. The upper panel of each plot shows
the radial leg flown through the southern part the storm. This segment passes through or near the simulated
inner wind maxima in several of the earlier forecasts. In all but the final model cycle of this sequence, the
HWRF-simulated synthetic leg is between 5 and 20 m s�1 greater than that of the observed leg in the real
storm. We can conclude that the earlier HWRF forecasts overdid the strength of the inner wind maximum,
while the final HWRF forecast had a more accurate representation of this decaying feature. Finally, we turn
our attention to the radial leg shown in the lower panel of each plot. This panel corresponds to the leg flown
to the north of the storm. In the first two forecasts (at 42- and 30-h lead times), the synthetic radial legs have
wind speeds that are between 10 and 20 m s�1 lower than the observed radial leg between radii of 40 and
140 km. The 18-h forecast is much closer to the observed, but is still too low by about 10 m s�1 between
80 and 130 km. The final forecast is somewhat worse than the 18-h forecast. We should note that in all four
forecasts, this northern leg did not extend radially outward enough to capture the simulated RMW. Thus, we
cannot make conclusions about whether HWRF correctly captured the magnitude of the maximum winds
in this band.

5 CONCLUDING REMARKS

5.1 Summary

The aim of this work has been to develop a prototype module to implement the synthetic profiles tech-
nique for the HWRF model and then to test the module on a series of model runs from Hurricane Sandy.
The goal has been to determine the potential efficacy and utility of the technique for purposes of verification
and model diagnostics. A 34,000-line code set has been devised to handle all of the steps needed to process
the flight level data into a form that supports use in synthetic profiles. The data are first standardized, then
translated into storm-relative coordinates, parsed into radial legs, and then interpolated into a high resolution
radial grid with 100-m grid spacing. A significant amount of work has been undertaken to quality control
the data. This work involved both formatting corrections to the source data files to ensure that they are read



Figure 20: Plan view of synthetic trajectories for the 42-h forecast verifying at 18Z on 29 October 2012.
This model cycle was initialized at 00Z on 28 October 2012.



Figure 21: Plan view of synthetic trajectories for the 30-h forecast verifying at 18Z on 29 October 2012.
This model cycle was initialized at 12Z on 28 October 2012.



Figure 22: Plan view of synthetic trajectories for the 18-h forecast verifying at 18Z on 29 October 2012.
This model cycle was initialized at 00Z on 29 October 2012.



Figure 23: Plan view of synthetic trajectories for the 6-h forecast verifying at 18Z on 29 October 2012. This
model cycle was initialized at 12Z on 29 October 2012.



Figure 24: Comparison of synthetic and real wind structure for radial legs for the 42-h forecast verifying at
18Z on 29 October 2012. This model cycle was initialized at 00Z on 28 October 2012.



Figure 25: Comparison of synthetic and real wind structure for radial legs for the 30-h forecast verifying at
18Z on 29 October 2012. This model cycle was initialized at 12Z on 28 October 2012.



Figure 26: Comparison of synthetic and real wind structure for radial legs for the 18-h forecast verifying at
18Z on 29 October 2012. This model cycle was initialized at 00Z on 29 October 2012.



Figure 27: Comparison of synthetic and real wind structure for radial legs for the 6-h forecast verifying at
18Z on 29 October 2012. This model cycle was initialized at 12Z on 29 October 2012.



correctly, as well as extensive efforts to develop an algorithm to filter out poor quality SFMR surface wind
speed data that result from wind retrievals over land, over shallow water, or when the plane was turning or
rolling. The end result of these efforts is a high quality data Extended Flight Level Dataset (FLIGHT+) that
has many potential uses beyond the current work.

The results from the test suite of Hurricane Sandy simulations show that the synthetic profiles technique
is able to provide a wealth of high quality diagnostic information about the storm structure, considerably
more so than is readily available merely by making eyeball comparisons. The suite of comparisons for
just half of the model cycles for Hurricane Sandy resulted in over 350 model/observation matches. Some
general conclusions can be drawn after perusing some of these comparisons:

� The technique is able to graphically illustrate the radial wind structure of the real and simulated
storms in ways that are intuitive and readily understandable.

� The technique is able to uncover significant differences between the simulated and real storm struc-
tures, such as differences in the maximum wind speed, the RMW, and differences in the symmetry or
asymmetry between radial legs.

� With some additional interpretation by the viewer, the technique can also illustrate differences in the
representation of inner and outer wind maxima and other structural differences.

� HWRF initially intensified the storm too fast, leading to very large differences near the RMW in the
early phases of Sandy.

� HWRF’s representation of the baroclinic and tropical features of the storm generally improved with
forecast lead time for the final set of forecasts prior to landfall. The final 6-h forecast had a better
representation of the decaying inner wind maximum feature, as well as the overall size and strength
of the outer wind band.

� HWRF’s simulated storm had an outer wind band near landfall that may have been significantly larger
than the actual storm. While it is difficult to conclude this, given that the radial legs in the final flight
were too short, the wind structure in HWRF within the radial leg was still significantly weaker than
the observed storm.

� HWRF’s simulated radial wind structure is generally much smoother than the observed radial wind
structure, with less variability.

On this last point, HWRF’s wind structure is even smoother than one might expect given its 3 km inner
grid mesh size. Normally, one might expect a NWP model to resolve features that are 6 to 8 times the
size of its mesh size, however the wind maximum features in HWRF seem to be more on a scale that is
7-15 times the mesh size (or 21 � 45 km). This albeit casual observation suggests that HWRF may have
horizontal diffusion that is too high, or that some other factor in the model is leading to an incorrect cascade
of turbulence.

5.2 Recommendations

Several recommendations can be made based on the experience gained in implementing the synthetic
profiles in the prototype module and from the results of the Sandy test cases.

Firstly, if the synthetic profiles technique is to be used for operational verification, it may be necessary
to modify the flight protocols based on storm size. This was graphically illustrated by the final examples
from the Sandy test suite, in which the flight pattern fit almost entirely inside the outer wind band of the



model. In order to use the synthetic profiles technique to examine the full wind structure of the storm, it is
essential that the radial legs flown extend radially outward of both the maximum wind in the real storm and
the likely possible maximum wind in the modeled storm. This means that longer radial legs must be flown
in larger storms. Extremely large storms such as Hurricane Sandy may require a two-plane mission in order
to get enough data within a reasonable amount of time. When a dual-plane mission is not possible, flying 2
long passes through the storm would be preferable to flying 3 shorter passes.13

Another recommendation that can be made is that the latitude and longitude coordinates of the flight
level data be stored with at least three digits of precision. When only two digits are used, the computation
of incremental position change can be subject to floating point round-off error, which may lead to difficulty
in parsing the radial legs. Due to this factor, it was necessary to use a running average of the 19-point
centered difference of the position change instead of the instantaneous position change. Having three digits
of precision may obviate the need for this measure.

5.3 Future Work

This current prototype module has only scratched the surface of what is possible with synthetic profiles.
The PI hopes to find additional funding support to further elaborate on the capabilities of the module, as
well as to test the sensitivity to a variety of factors in the technique. Briefly, the PI hopes to:

� Expand the module to generate synthetic radial legs for other flight level quantities such as tempera-
ture, dew point temperature, or diagnostics such as vorticity and �E .

� Expand the module to generate synthetic profiles of quantities remotely sensed by the SFMR instru-
ment, including surface wind speed and surface rain rate.

� Add the capability to generate synthetic profiles of the extrapolated sea level pressure computed from
flight level.

� Add the capability to subtract the motion of the simulated storm, thereby allowing comparison of the
storm-relative wind speeds, and accurate computation of the azimuthal and radial wind components.

� Expand the module to run on a variety of NWP models.

� Add the capability to compute an azimuthal-mean profile from the available radial legs in order to
examine and compare the symmetric structure.

� Examine the sensitivity to different spatial smoothing methods to determine the optimal amount to
smooth the aircraft observations so as to match the spatial resolution of the model simulation.

� Examine the sensitivity of the technique to the stationarity assumption (that the synthetic radial leg
can be taken as if the plane was able to instantaneously sample the storm).

� Examine the sensitivity to different methods of interpolation.

� Devise verification metrics to condense and summarize the comparison information.

� Devise other diagnostics, such as symmetry from the radial structure.

� Experiment with applying the Willoughby-Chelmow center finding technique to the model data,
rather than relying on the tracker.

13This protocol may necessarily conflict with the tail-Doppler radar protocol, so it may not be possible to find a workable
compromise in all cases.



The synthetic profiles technique can also be used to enable Observing System Simulation Experiments
(OSSEs) in which the impact of observations on the model’s analysis can be studied. The technique could
also be readily applied to allow direct verification of wind analysis products such as H*WIND (DiNapoli
et al. 2012) and the Multi-Platform Satellite Surface Wind Analysis (Knaff et al. 2011). The FLIGHT+
dataset may prove very useful for additional work in data assimilation, such as using storm-centered ap-
proaches (e.g., Navarro and Hakim 2014), or approaches that utilize the surface pressure field more heavily
(e.g., Davidson et al. 2014). The PI plans to provide QC’d SFMR data to data assimilation experts at
NCEP/EMC for further study to see if the higher quality data can lead to better use in inner core data
assimilation.

Finally, in the future we hope to apply the synthetic profiles approach to the curving trajectories of
dropsondes. As the resolution of regional and global hurricane models increases to ever finer scales, this
approach may provide a more useful and direct way to examine the low-level vertical thermal and kinematic
structures in simulated storms. We also hope to explore potential real-time applications that could result in
improved “guidance-on-guidance” for intensity and structure prediction.
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