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1. Introduction 
 

Each spring, the Experimental Forecast Program (EFP) of the NOAA/Hazardous Weather Testbed 
(HWT), organized by the Storm Prediction Center (SPC) and National Severe Storms Laboratory (NSSL), 
conducts a collaborative experiment to test emerging concepts and technologies designed to improve 
the prediction of hazardous convective weather.  The primary goals of the HWT are to accelerate the 
transfer of promising new tools from research to operations, to inspire new initiatives for operationally 
relevant research, and to identify and document sensitivities and the performance of state-of-the art 
experimental convection-allowing (1- to 3-km grid-spacing) modeling systems.   

The 2024 HWT Spring Forecasting Experiment (SFE 2024), a cornerstone of the EFP, will be 
conducted 29 April – 31 May.  This will be the second hybrid experiment with both in-person and virtual 
participation. Relative to last year’s hybrid experiment, SFE 2024 will have a similar format with all 
participants involved in morning and afternoon forecasting activities, as well as next-day model 
evaluation activities. Additionally, there will be a small evening activity in which 2-4 NWS forecasters 
will issue experimental 0-1 and 1-2 h lead time forecasts until 8pm CDT. As in previous years, a suite of 
new and improved experimental CAM guidance contributed by our large group of collaborators will be 
central to these forecasting and model evaluation activities. These contributions comprise an ensemble 
framework called the Community Leveraged Unified Ensemble (CLUE; Clark et al. 2018).  The 2024 CLUE 
is constructed by using common model specifications (e.g., grid-spacing, model version, domain size, 
post-processing, etc.) wherever possible so that the simulations contributed by each group can be used 
in carefully designed controlled experiments.  This design will once again allow us to conduct several 
experiments geared toward identifying optimal configuration strategies for deterministic CAMs and 
CAM ensembles.  The 2024 CLUE includes 34 members. The SFE 2024 will also continue testing of the 
Warn-on-Forecast System (WoFS, hereafter), which produces 18-member, 3-km grid-spacing forecasts, 
and will be used for the 8th year to issue very short lead-time outlooks and products.   

With plans for operational implementation of the Rapid Refresh Forecast System (RRFS) in 2025, 
SFE 2024 will once again make it a point of emphasis to evaluate the RRFS against the operational High-
Resolution Rapid Refresh (HRRR) and High-Resolution Ensemble Forecast (HREF) systems for severe 
weather forecasting applications.  Also, SFE 2024 will include more experimental configurations of the 
Model for Prediction Across Scales (MPAS), including an MPAS ensemble run by NOAA’s Global Systems 
Laboratory and NSSL.   

This document summarizes the core interests of SFE 2024 with information on experiment 
operations.  The organizational structure of the HWT and information on various forecast tools and 
diagnostics can also be found in this document.  The remainder of the operations plan is organized as 
follows: Section 2 provides details on model and products being tested during SFE 2024 and Section 3 
describes the core interests and new concepts being introduced for SFE 2024.  A list of daily participants, 
details on the SFE forecasting, and more general information on NOAA's HWT are found in appendices. 
 
2.  Overview of Experimental Products and Models  
 

Daily model evaluation activities will occur Tuesday through Friday from 9:00 – 11:00am (CDT) 
focusing on various CLUE subsets and other models, guidance, and products.  The 2024 CLUE includes 
deterministic and ensemble forecasts using the most recent versions of the Finite Volume Cubed-Sphere 
Model (FV3), the Advanced Research Weather Research and Forecasting (WRF-ARW) model, and MPAS. 
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In addition to the CLUE, the operational 3-km grid-spacing High-Resolution Ensemble Forecast system 
version 3 (HREFv3) and High-Resolution Rapid Refresh version 4 (HRRRv4) will be examined as the 
operational modeling baselines.  The rest of this section provides further details on each modeling 
system utilized in SFE 2024. 

   
a) The 2024 Community Leveraged Unified Ensemble (CLUE) 
 
 The CLUE is a carefully designed ensemble with members contributed by NOAA units: NSSL, 
Environmental Modeling Center (EMC), GSL, and the Geophysical Fluid Dynamics Laboratory (GFDL); 
and research groups at the National Aeronautics and Space Administration (NASA) and the National 
Center for Atmospheric Research (NCAR). All CLUE members cover a CONUS domain, except the NSSL1, 
which covers the eastern 2/3 of the CONUS.  CLUE members have 3-km grid-spacing, except NASA FV3 
uses 2.2-km, NSSL1 uses 1-km, MPAS2 uses 2-km, and MPAS4 uses 4-km. Depending on the CLUE subset, 
forecast lengths range from 36 to 192 h. Table 1 summarizes all 2024 CLUE contributions. Subsequent 
tables provide details on members in each subset, as well as ensembles comprising different 
combinations of members that will be evaluated to test different configuration strategies.   
 
Table 1 Summary of the 11 unique subsets that comprise the 2024 CLUE.  

Clue Subset # of 
mems 

IC/LBC 
perts 

Mixed 
Physics 

Data 
Assimilation 

Dynamical 
Core 

Agency Init. Times 
(UTC) 

Forecast 
Length (h) 

Domain 

RRFS 1 none no Hybrid 3DEnVar FV3 EMC/GSL 00, 06, 12, 18 60 CONUS 
REFS 5 EnKF yes Hybrid 3DEnVar FV3 EMC/GSL 00, 06, 12, 18 60 CONUS 

NSSL1 1 none no HRRR ICs ARW NSSL 00 36 2/3 CONUS 
NSSL-MPAS 3 none no HRRR or RRFS ICs MPAS NSSL 00, 12 48 or 60 CONUS 

GSL-MPAS 5 EnKF yes RRFS ICs MPAS GSL 06 or 12 54 or 48 CONUS 

MPAS2 1 none no HRRR ICs MPAS GSL 00 36 CONUS 

MPAS4 1 none no HRRRICs MPAS GSL 00 36 CONUS 

GFDL-FV3 1 none no GFS cold start FV3 GFDL 00 126 CONUS 

NASA-FV3 1 none no GEOS-DA FV3 NASA 00 120 CONUS 

NCAR-FV3 10 GEFS no GEFS cold start FV3 NCAR 00 192 CONUS 
NCAR-MPAS 5 GEFS no GEFS cold start MPAS NCAR 00 132 CONUS 

 

Table 2 Specifications for the Rapid Refresh Forecast System (RRFS). The RRFS is initialized from a hybrid 3DEnVar analysis 
and is the control member of the RRFS Ensemble Forecast System (REFS). The ensemble component of the 3DEnVar uses 
the RRFS Data Assimilation System (RDAS) ensemble Kalman filter. The RDAS uses a wide variety of conventional 
observations along with radar reflectivity. It also included a nonvariational cloud analysis. For gravity wave drag, the 
small scale and turbulence orographic form drag options are used. RRFS forecasts are initialized from 00, 06, 12, and 18 
UTC with forecasts to 60 h.  

Members:  
RRFS 

ICs LBCs Micro-
physics 

PBL/SFC LSM Radiation  Cumulus Dynamical 
Core 

RRFS RRFS hybrid 3DEnVar GFS Thompson MYNN/MYNN RUC RRTMG GF-deep FV3 
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Table 3 Specifications for the RRFS Ensemble Forecast System (REFS). REFS forecasts are initialized from 00, 06, 12, and 18 
UTC with forecasts to 60 h. Schemes marked with an asterisk (*) include stochastically perturbed parameterizations (SPP) 
and those marked with a hashtag (#) include fixed parameter perturbations. 

Members:  
REFS 

ICs LBCs Micro-
physics 

PBL/SFC LSM Radiation Cumulus Dynamical 
Core 

REFS01 RRFS enkf1 GEFS m1 Thompson* TKE-EDMF/GFS RUC* RRTMG* GF-deep*+sh FV3 
REFS02 RRFS enkf2 GEFS m2 Thompson* MYNN*/MYNN* RUC* RRTMG* saSAS deep FV3 
REFS03 RRFS enkf3 GEFS m3 NSSL# MYNN*/MYNN* RUC* RRTMG* GF deep* FV3 
REFS04 RRFS enkf4 GEFS m4 NSSL# TKE-EDMF/GFS RUC* RRTMG* GF-deep*+sh FV3 
REFS05 RRFS enkf5 GEFS m5 NSSL# MYNN*/MYNN* RUC* RRTMG* saSAS deep FV3 

 

Table 4 Specifications for the NSSL1 CLUE member. This member uses 1-km grid-spacing covering the eastern 2/3 of the 
CONUS and is driven by the HRRR.  For computational efficiency, the 1-km nest does not start integration until 6 h into 
the 00Z-initialized HRRR forecast (i.e., 0600 UTC), and forecasts to 36 h (i.e., 1200 UTC the next day) are provided. 

Member:  
NSSL1 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL1 HRRR HRRR NSSL MYNN RUC RRTMG ARW 
 

Table 5 Specifications for the NSSL-MPAS CLUE members.  These members use 3-km grid-spacing covering the CONUS and 
are driven by the HRRR or RRFS.  The last two letters of each member denote the ICs and microphysics (“HN” = HRRR-
NSSL (Mansell et al. 2010), “HT” = HRRR-Thompson, and “RT” = RRFS-Thompson).   All NSSL-MPAS runs are initialized 
from 00 and 12 UTC; the NSSL-MPAS-HN and NSSL-MPAS-HT have forecast lengths of 48 h, while NSSL-MPAS-RT runs to 
60 h. 

Member:  
NSSL-MPAS 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

NSSL-MPAS-HN HRRR HRRR NSSL MYNN RUC RRTMG MPAS 
NSSL-MPAS-HT HRRR HRRR Thompson MYNN RUC RRTMG MPAS 
NSSL-MPAS-RT RRFS RRFS Thompson MYNN RUC RRTMG MPAS 

 

Table 6 Specifications for the GSL-MPAS CLUE members. These members use 3-km grid-spacing covering the CONUS. 
Members GSL-MPAS01-04 are initialized from 12 UTC REFS members and have 48 h forecasts; member GSL-MPAS05 is 
initialized from the 06 UTC RRFS and has 54 h forecasts.     

Member:  
NSSL-MPAS 

ICs LBCs Microphysics PBL LSM Radiation Dynamical 
Core 

GSL-MPAS01 RRFS enkf1 GEFS mem1 Thompson MYNN RUC RRTMG MPAS 
GSL-MPAS02 RRFS enkf2 GEFS mem2 Thompson MYNN RUC RRTMG MPAS 
GSL-MPAS03 RRFS enkf3 GEFS mem3 NSSL MYNN RUC RRTMG MPAS 
GSL-MPAS04 RRFS enkf5 GEFS mem5 NSSL MYNN RUC RRTMG MPAS 
GSL-MPAS05 RRFS 06Z RRFS  Thompson MYNN RUC RRTMG MPAS 

 

Table 7 Specifications for the MPAS2 and MPAS4 CLUE members. The MPAS2 and MPAS4 configurations are initialized at 00 
UTC and have the same specifications as NSSL-MPAS-HN (Table 5), except for 2-km and 4-km grid-spacing, respectively. 

Member:  
NSSL-MPAS 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

MPAS2 HRRR HRRR NSSL MYNN RUC RRTMG MPAS 
MPAS4 HRRR HRRR NSSL MYNN RUC RRTMG MPAS 
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Table 8 Specifications for the GFDL FV3 CLUE member. GFDL’s C-SHiELD (Harris et al., 2019) is an FV3-based model that uses 
a 13-km global grid and a 3-km CONUS nest, coupled to a modified form of the GFS Physics. C-SHiELD uses version 3 of 
the GFDL In-line Microphysics (Zhou et al. 2022) and the EMC/UW TKE-EDMF PBL scheme (Han and Bretherton 2019). 
On the CONUS nest the Noah-MP LSM is used; the global domain uses the GFS Noah LSM. Initialization is cold start from 
regridded GFS real-time analyses. GFDL will provide simulations run daily at 00Z out to 126 hours to demonstrate the 
potential for medium-range prediction of convective-scale events. 

Member: 
GFDL FV3 

ICs LBCs Microphysics PBL LSM Radiation Dynamical Core 

GFDL-FV3 GFS n/a GFDL TKE-EDMF NOAH-MP RRTMG FV3 
 

Table 9 Specifications for the NASA-FV3 CLUE member. The NASA-FV3 is also known as the NASA GEOS model and will run an 
FV3-based stretched global grid.  The target resolution is a c2160 grid with 137 vertical levels, the stretching will produce 
a 2-km domain over CONUS with the coarsest global resolution of 12-km over the Indian Ocean. We will be running this 
case in a replay mode using an incremental analysis update (IAU) to our GEOS-FP 12-km production data assimilation 
system. The IAU approach permits our higher resolution model to evolve dynamically with time and avoids having to cold 
start forecasts each day.  The NASA FV3 model will produce 5-day forecasts at 00 and 12 UTC daily to provide medium 
range prediction of convective events over CONUS. 

Member: 
NASA-FV3 

ICs LBCs Micro-
physics 

PBL LSM Radiation Dynamical 
Core 

NASA-FV3 GEOS-FP None GEOS-GFDL Lock-Louis & UW Nasa Catchment RRTMG FV3 
 

Table 10 Specifications for the NCAR-FV3 ensemble members. These 10-member ensemble forecasts are based on GFDL’s C-
SHiELD (Harris et al., 2020), an FV3-based model that uses a 13-km global grid and a 3-km CONUS nest, coupled to a 
modified form of the GFS Physics. This version of the C-SHiELD uses the EMC/UW TKE-EDMF PBL scheme (Han and 
Bretherton 2019) and version 2 of the GFDL Inline Microphysics (Zhou et al. 2019; Harris et al. 2020). On the CONUS nest 
the Noah-MP LSM is used while the global domain uses the GFS Noah LSM. The Scale-aware Simplified (SAS) Arakawa-
Schubert cumulus parameterization is also used; both shallow and deep schemes are employed on the 13-km global grid 
but only a shallow scheme is employed on the 3-km nest. All members use identical physics, with ensemble diversity 
solely provided by initial conditions. No stochastic physics are used. Initialization is cold-start from members 1–10 of real-
time GEFS initial conditions. Simulations run daily at 00Z out to 204 hours to demonstrate the potential for medium-
range prediction of convective-scale events. 

Members:  
NCAR-FV3 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-FV3-01 GEFS m1 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-02 GEFS m2 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-03 GEFS m3 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-04 GEFS m4 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-05 GEFS m5 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-06 GEFS m6 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-07 GEFS m7 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-08 GEFS m8 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-09 GEFS m9 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
NCAR-FV3-10 GEFS m10 n/a GFDLv2 TKE-EDMF NOAH-MP RRTMG SAS Arakawa-Schubert FV3 
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Table 11 Specifications for the NCAR-MPAS ensemble members. All 5 ensemble members use NCAR’s MPAS model and 
identical physics, with ensemble diversity solely provided by ICs. Initialization is cold-start from members 1–5 of real-time 
GEFS ICs. Simulations run daily at 00Z out to 132 hours. 

Members:  
NCAR-MPAS 

ICs LBCs Micro-
physics 

PBL LSM Radiation Cumulus Dynamical 
Core 

NCAR-MPAS01 GEFS m1 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS02 GEFS m2 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS03 GEFS m3 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS04 GEFS m4 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 
NCAR-MPAS05 GEFS m5 n/a Thompson MYNN NOAH RRTMG Scale-aware New Tiedtke MPAS 

 
The configuration of the 2024 CLUE will allow for several unique experiments that have been 

designed to examine issues immediately relevant to the design of a NCEP/EMC operational CAM-based 
ensemble.  Some of the major themes are listed below: 
 
RRFS/REFS vs. HRRR/HREF: With plans for operational implementation of RRFS and REFS in 2025, a 
critical evaluation activity for SFE 2024 will involve comparing RRFS and REFS to their operational 
counterparts HRRR and HREF, respectively.  Comparisons will be made for Day 1 & 2 lead times.  
Additional comparisons will be made during the first 12 h of the forecasts to evaluate the effectiveness 
of the data assimilation systems in each system.  
 
REFS Configuration Strategies: The RRFS control (Table 2) and perturbed REFS members (Table 3) 
provide 60 h forecasts, which are the basis for four different REFS versions based at 1200 UTC: (1) EMC 
REFS uses the RRFS, all REFS members, and the HRRR initialized at 1200 and 0600 UTC; (2) SPC REFS has 
fewer members and a larger proportion of “control” members compared to EMC REFS by only using 1200 
UTC REFS perturbed members and including older (t-12) time-lagged HRRR and RRFS members; (3) SPC 
REFS ARW is similar to SPC REFS, but replaces two of the REFS perturbed members with HRW ARW 
members initialized at 1200 and 0000 UTC; and (4) MPAS REFS mirrors SPC REFS, except all RRFS and 
REFS members are replaced by MPAS members initialized from the same respective analyses as the RRFS 
and REFS members (Table 12).  
 
Table 12 Ensemble members comprising four versions of REFS based at 1200 UTC. 

 EMC REFS SPC REFS SPC REFS ARW MPAS REFS 
# Member Init. Time Member Init. Time Member Init. Time Member Init. Time 
1 RRFS 12Z RRFS 12Z RRFS 12Z NSSL-MPAS-RT 12Z 
2 REFS01 12Z REFS01 12Z REFS03 12Z GSL-MPAS01 12Z 
3 REFS02 12Z REFS02  12Z REFS02 12Z GSL-MPAS02 12Z 
4 REFS03 12Z REFS03 12Z HRW ARW 12Z GSL-MPAS03 12Z 
5 REFS04 12Z REFS05 12Z HRRR 12Z GSL-MPAS04 12Z 
6 REFS05 12Z HRRR 12Z RRFS 06Z HRRR 12Z 
7 HRRR 12Z RRFS 06Z HRRR 06Z GSL-MPAS05 06Z 
8 RRFS 06Z HRRR 06Z RRFS 00Z HRRR 06Z 
9 REFS01 06Z RRFS 00Z HRRR 00Z NSSL-MPAS-RT 00Z 
10 REFS02 06Z HRRR 00Z HRW ARW 00Z HRRR 00Z 
11 REFS03 06Z       
12 REFS04 06Z       
13 REFS05 06Z       
14 HRRR 06Z       
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Medium-Range CAM Ensembles: NCAR will be providing a 10-member, 0000 UTC FV3-based, 3-km grid-
spacing ensemble with forecasts to 7 days (Table 10).  Additionally, a 5-member, 3-km grid-spacing 0000 
UTC MPAS ensemble will have forecasts to 5 days (Table 11).  Days 3-7 will be evaluated in the NCAR-
FV3 ensemble for the same valid time to assess the evolution of forecast quality with increasing lead 
time.  For lead times of 3-5 days, a 5-member subset of NCAR-FV3 will be compared to the 5-member 
NCAR-MPAS ensemble to assess differences in forecast quality between the two ensembles at each lead 
time.  
 
Model resolution sensitivities: NSSL will be running a version of WRF-ARW with 1-km grid-spacing 
initialized from the HRRR (NSSL1; Table 4). The NSSL1 forecasts will be compared to the HRRR to examine 
grid-spacing sensitivity and assess whether enhanced resolution can provide improved severe weather 
guidance.  Particular attention will be given to the depiction of storm structure and mode, as well as low-
level rotation diagnostics (e.g., 0-2 km AGL updraft helicity) for which recent research suggests the 1-km 
grid-spacing runs can provide improved tornado guidance.  Additionally, GSL is running 2- and 4-km grid-
spacing versions of MPAS (Table 7) that mirror the 3-km grid-spacing NSSL-MPAS-HN. These runs will be 
used to assess MPAS resolution sensitivities.    
 
3D-RTMA Background and Storm-Scale Analyses: Hourly versions of the 3D-RTMA will be compared to 
assess the role that the background first-guess has on the final analysis.  One version uses the HRRR for 
the background while the other uses the RRFS.  Versions of the analyses upscaled to 40-km will also be 
examined and compared with SPC’s RAP-based surface objective analysis (sfcOA). Finally, 15-minute 
WoFS forecasts of hourly maximum 80-m winds, UH, and updraft speed will be compared to Multi-Radar, 
Multi-Sensor (MRMS) products to gauge whether these 15-minute WoFS forecasts are a viable proxy for 
observed hazards. 
 

To ensure consistent post-processing, visualization, and verification, post-processing is standardized 
as much as possible, so that a consistent set of model output fields are output on the same grid.  For the 
2024 CLUE, all groups output fields to the 3-km CONUS grid used for the operational HRRRv4.  For WRF-
ARW, FV3-LAM, and MPAS the Unified Post-Processor software (UPP; available at 
http://www.dtcenter.org/upp/users/downloads/index.php) is used and a minimum set of 49 output 
fields is provided at hourly intervals.  This list of mandatory CLUE fields is provided in Appendix C and 
includes fields that are relevant to a broad range of forecast needs, including aviation, severe weather, 
and precipitation.   
 
 
b) High Resolution Ensemble Forecast (HREFv3) System 
 
 HREFv3 is a 10-member CAM ensemble that was implemented 11 May 2021.    The design of 
HREFv3 originated from the SSEO, which demonstrated skill for six years in the HWT and SPC prior to 
operational implementation as the HREF in 2017.  In HREFv3, the HRW NMMB simulations have been 
replaced with HRW FV3 and HRRRv3 has been upgraded to HRRRv4.  HREFv3 specifications are listed in 
Table 13. 
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Table 13 Model specifications for HREFv3.   

HREFv3 ICs LBCs Microphysics PBL dx (km) Vertical Levels HREF hours 

HRRRv4 HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 48 
HRRRv4 -6h HRRRDAS RAP -1h Thompson MYNN 3.0 50 0 – 42 
HRW ARW RAP GFS -6h WSM6 YSU 3.2 50 0 – 48 
HRW ARW -12h RAP GFS -6h WSM6 YSU 3.2 50 0 – 36 
HRW FV3 GFS GFS -6h GFDL EDMF 3 50 0 – 60 
HRW FV3 -12h GFS GFS-6h GFDL EDMF 3 50 0 – 48 
HRW NSSL NAM NAM -6h WSM6 MYJ 3.2 40 0 – 48 
HRW NSSL -12h NAM NAM -6h WSM6 MYJ 3.2 40 0 – 36 
NAM CONUS Nest NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 60 
NAM CONUS Nest -12h NAM NAM Ferrier-Aligo MYJ 3.0 60 0 – 48  

 
 
c) NSSL cloud-based Warn-on-Forecast Experiments 
  

Cloud-based Warn-on-Forecast (cb-WoFS) is the next WoFS iteration, upgraded in 2022 to use 
current technologies in containerization and cloud computing. The entire WoFS application was rebuilt 
on top of multiple Platform-as-a-Service and Infrastucture-as-a-Service technologies on the Azure 
platform and the WRF model itself rebuilt to run in containers optimized for HPC. With the cb-WoFS 
interface, administrators can easily configure the domain and dynamically create an HPC infrastructure 
for the run, and upon completion, tear it down, thereby reducing costs by only paying for used resources. 
Another benefit is that as Azure continues to add new, updated computer core types from chip 
manufacturers, these options are passed down to Azure customers, giving cb-WoFS operators the choice 
of running on the latest technologies. All parts of WoFS have been rebuilt for scalability: the 
containerized WRF can be executed on any node, the post-processing is built on high performance 
queues and containerized, so any number of post-processing jobs can run concurrently.   

The cb-WoFS is a rapidly-updating 36-member, 3-km grid-spacing WRF-ARW-based ensemble 
data assimilation and forecast system. The cb-WoFS forecasts are initialized every 30 minutes and used 
to produce very short-range (0-6/0-3 h at top/bottom of the hour) probabilistic forecasts of individual 
thunderstorms and their associated hazardous weather phenomena such as supercell hail, high winds, 
flash flooding, and supercell thunderstorm rotation.  The 900-km x 900-km daily cb-WoFS domain will 
target the primary region where severe weather is anticipated. For SFE 2024, WoFS will once again have 
the capability to run over two different domains.  A second domain will only be implemented when there 
are two separate regions where severe weather is expected (e.g., Midwest and East Coast), or when 
there is a very large single area for which two domains are needed to cover the entire risk area.  

The starting point for each day’s experiment will be the High-Resolution Rapid Refresh Data 
Assimilation System (HRRRDAS) and the 1200 UTC HRRR forecast provided by NCEP Central Operations. 
A 1-h forecast from the 1400 UTC, 36-member, hourly-cycled HRRRDAS analysis provides the ICs for cb-
WoFS.  Boundary conditions are perturbed HRRR forecasts, where perturbations from the 0600 UTC 
GEFS are added to the 1200 UTC HRRR forecasts.  The GEFS perturbations are scaled such that the 
ensemble spread at the lateral boundaries is similar to that provided previously by the experimental 
HRRR ensemble.  Table 11 provides a summary of the model specifications for the cb-WoFS, and Figure 
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1 shows an example of a SPC Day 1 convective outlook and corresponding cb-WoFS domain with WSR-
88D radars used for data assimilation overlaid.  Further details on the cb-WoFS are included below. 

The 36-member cb-WoFS, run from 1500 UTC Day 1 to 0300 UTC Day 2, cycles its data 
assimilation every 15 minutes by GSI-EnKF assimilation of MRMS radar reflectivity and radial velocity 
data, cloud water path retrievals and clear-sky radiances from the GOES-16 imager, and Oklahoma 
Mesonet observations (when available). Conventional (i.e., prepbufr) observations are also assimilated 
at 15 minutes past each hour. All cb-WoFS ensemble members use the NSSL 2-moment microphysics 
parameterization and the RUC land-surface model; however, the PBL and radiation physics options are 
varied amongst the ensemble members to increase ensemble spread, given the fact that the EnKF may 
underrepresent model physics errors. 6-h (3-h) forecasts are initialized and launched from the first 18 
members from the real-time cb-WoFS analyses on each hour (half-hour). The first available forecast is 
launched at 1700 UTC Day 1 and the last at 0300 UTC Day 2.  These forecasts will be viewable using the 
web-based cb-WoFS Forecast Viewer (https://cbwofs.nssl.noaa.gov). 
 
Table 14 cb-WoFS configuration. 

 WoFS 
Model Version WRF-ARW v3.9+ 
Grid Dimensions 300 x 300 x 50 
Grid Spacing 3 km 
EnKF cycling 36-mem. w/ GSI-EnKF every 15 min 
Observations - Prepbufr conventional observations 

- Oklahoma Mesonet (when available) 
- MRMS reflectivity ≥ 15 dBZ; radar ‘zeroes’; radial velocity 
- GOES-16 cloud-water path & clear sky radiances 

Radiation LW/SW Dudhia/RRTM, RRTMG/RRTMG 
Microphysics NSSL 2-moment 
PBL YSU, MYJ, or MYNN 
LSM RUC (Smirnova) 

 

Figure 1 SPC 1630 UTC issued Day 1 convective outlook (left) and corresponding WoFS grid (right). 
 
 
d) AI NWP Emulators 
 
 In the last two years, fully AI-based models (i.e., AI NWP emulators) have been developed by the 
private sector for global weather prediction. This area of research is advancing rapidly and has the 
potential to be an advancement in weather prediction since skill measures of the NWP emulators 
commonly exceed those of the ECMWF’s Integrated Forecast System (IFS; ECMWF 2020), the world’s 
most skillful global NWP system. Furthermore, the NWP emulators can produce forecasts in seconds, 
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orders of magnitude faster and with fewer computational resources than traditional NWP systems. The 
algorithms are trained using large, global, multi-year reanalysis datasets like ERA5 (Hersbach et al. 2020). 
Several of these algorithms have been made public, and government agencies are beginning to run and 
train the models themselves. While objective skill measures have been impressive, these NWP emulators 
have yet to be tested for real-time operational forecasting applications.  Thus, during SFE 2024, we will 
evaluate several of the publicly available algorithms that were trained using ERA5 data. The AI-based 
NWP emulators are being run experimentally at the Cooperative Institute for Research in the 
Atmosphere (CIRA) by providing GFS initial conditions to these AI models. The CIRA forecasts can be 
viewed at: https://aiweather.cira.colostate.edu/. Information on each AI NWP Emulator that will be 
evaluated during SFE 2024 is contained below.   
 
 i. FourCastNetv2 
 
 The AI NWP Emulator known as FourCastNet was developed by NVIDIA and uses adaptive Fourier 
neural operators to provide short to medium range global predictions at 0.25° resolution (Pathak et al. 
2022).  The code is publicly available at: https://github.com/NVlabs/FourCastNet. FourCastNet has been 
found to match the skill of IFS at short lead times for large-scale variables, while outperforming IFS for 
variables with complex fine-scale structure such as precipitation.  FourCastNet can generate a week-long 
forecast in less than 2 seconds. A version of FourCastNet configured by CIRA, which provides  GFS 
analyses as initial conditions, will be evaluated during SFE 2024.  
 
 ii. Pangu-Weather 
 
 Pangu-Weather is a deep learning-based system trained using 43 years of ERA5 data and was 
developed by Huawei Cloud (China) (Bi et al. 2022). The forecasts are produced with 0.25° resolution. At 
time ranges of 1 h to 1 week, Pangu-Weather was found to outperform the IFS in terms of RMSE and 
anomaly correlation coefficient (ACC) for fields like geopotential, specific humidity, wind speed, and 
temperature. Pangu-Weather is applied by designing a 3D Earth Specific Transformer architecture that 
formulates the pressure level information into cubic data, and applying a hierarchical temporal 
aggregation algorithm to alleviate cumulative forecast errors. The code is publicly available at 
https://github.com/198808xc/Pangu-Weather. A version of Pangu-Weather configured by CIRA, which 
inputs GFS analyses as initial conditions, will be evaluated during SFE 2024.  
 
 iii. GraphCast 
 
 GraphCast is a machine-learning algorithm developed by Google that is trained directly from 
ERA5 data (Lam et al. 2022). GraphCast predicts hundreds of weather variables over 10 days using 0.25° 
resolution and produces forecasts in under one minute.  Objective verification found that GraphCast 
significantly outperformed the IFS on 90% of 1380 verification targets. The code for GraphCast is 
available publicly at https://github.com/deepmind/graphcast. A version of GraphCast run by CIRA will 
be evaluated during SFE 2024. GraphCast is pre-trained with ERA5 reanalysis data and forecasts are 
produced using GFS F00 initial conditions as input.   
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e) Calibrated Forecast Products 
 

i. Colorado State University (CSU) GEFS-based, ML-derived Hazard Probabilities (credit: A. Hill) 
 
Similar to previous SFEs, the Colorado State University Machine Learning Probabilities (Hill et al. 

2020; hereafter, GEFS Reforecast MLP) forecasts severe weather hazards through the application of 
random forests (RFs). The GEFS Reforecast MLP RFs are trained with about 9 years of daily 0000 UTC 
initializations from the FV3-based Global Ensemble Forecast System reforecast dataset (FV3-GEFS/R) 
along with reports of severe weather. For consistency with SPC outlooks as well as SFE activities, RFs are 
trained separately for individual hazards in the day 1-3 timeframes, such that separate forecasts are 
issued for each hazard type (example in Figure 3). Then, for days 4-7, forecasts are issued for any hazard 
type.   

Predictors from the FV3-GEFS/R correspond to parameters expected to be related to severe 
weather occurrence, including bulk wind shear, convective available potential energy, low-level wind 
and thermodynamics, as well as derived quantities like lifting condensation level; all predictors are listed 
in Table 15. To be consistent across variables and times, all predictors are gridded to a 0.5 degree grid 
for preprocessing. Severe weather reports (i.e., storm data) are similarly gridded over the training 
period, where each point is labeled a 0, 1, or 2 for the occurrence of no severe report, a severe report, 
and a significant severe report. For every gridded event of severe weather across the contiguous United 
States, predictors are selected around the training point with spatiotemporal dimensions to capture any 
pre-existing dynamical model biases from the FV3-GEFS/R, which allows the RFs to learn predictor biases 
during training. Spatially, predictors are gathered within a latitudinal and longitudinal radius (set to 3 in 
these models) around the training point so each grid point represents a separate predictor. Temporally, 
this procedure is followed at each model output time over the forecast window; the FV3-GEFS/R has 3-
hourly output through day 10. For example, during the day-1 period, predictors are gathered 3-hourly 
from forecast hour 12 through hour 36, totaling nine predictor times. The predictor assembly results in 
approximately 6,500 predictors for each training point in which to build the RFs. 
 

Table 15 Short-hand notation (left) and long description (right) of predictor variables used to train GEFS Reforecast MLP severe 
weather RFs. Derived variables from FV3-GEFS/R output are denoted with an asterisk (*). 

Predictor Acronym Predictor Description 
APCP 3-hourly accumulated precipitation 
CAPE Convective available potential energy 
CIN Convective inhibition 
U10 10 m latitudinal wind speed 
V10 10 m longitudinal wind speed 
T2M 2 m temperature 
Q2M 2 m specific humidity 
MSLP Mean sea level pressure 
PWAT Precipitable water 
UV10 10 m wind speed 
SRH03 0 - 3km storm relative helicity 
SHEAR850* 0 - 850 hPa bulk wind shear 
SHEAR500* 0 - 500 hPa bulk wind shear 
ZLCL* Height of lifting condensation level 
RH2M* 2 m relative humidity 
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Figure 2 Probabilistic day-3 forecasts of (upper left) tornado, (upper right) hail, and (bottom left) wind hazards valid 1200 - 

1200 UTC ending 23 March 2022. Hatched contours represent a 10% probability of significant severe hazards. 
 
ii. NSSL GEFS-based, ML-derived Hazard Probabilities (credit: A. Clark) 

  
 NSSL has formulated a similar RF model using archived operational GEFS data that provides 
probabilities of any severe weather at lead times of 1 to 15 days. The global GEFS fields are subset over 
a 0.5° by 0.5° grid covering the CONUS. In addition to the variables available within the GEFS forecasts, 
the pressure level data are used to derive additional diagnostics and indices commonly used for severe 
weather forecasting like bulk shear and the significant tornado parameter. After domain subsetting, the 
fields are interpolated to a coarser, 81-km grid that tightly encompasses the CONUS. After interpolation, 
only a set of 1,385 masked points covering CONUS land areas are used to train the RF. The fields are 
extracted at 3-hourly intervals from forecast hours 12 to 225 (Days 1-10) and 6-hourly intervals from 
forecast hours 228 to 372 (Days 11-15).  In Table 16, the GEFS fields used for predictors in the new RF 
algorithm (GEFS Operational MLP, hereafter) are listed, with the fields that required additional post-
processing marked with an asterisk.   

There are several notable differences between GEFS Operational MLP and GEFS Reforecast MLP. 
First, GEFS Reforecast MLP uses 12 different variables as predictors and no additional diagnostics are 
computed from the pressure level data (aside from bulk vertical wind shear), while GEFS-ops RF uses 18 
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predictors and does include severe weather diagnostics computed from pressure level data.  Both 
algorithms use the GEFS output at 3-hourly intervals, but GEFS Reforecast MLP uses 9 times per day: 12, 
15, 18, 21, 00, 03, 06, 09, and 12 UTC, while GEFS Operational MLP uses 8 times: 12, 15, 18, 21, 00, 03, 
06, and 09 UTC.  Second, GEFS Reforecast MLP uses a higher resolution grid of about 55-km (0.5° x 0.5°), 
while GEFS-ops RF uses the 81-km NCEP 211 grid.  Additionally, GEFS Reforecast MLP uses predictors at 
the grid-point being considered, as well as all points within a 7 x 7 point box surrounding the point. GEFS 
Operational MLP only uses predictors at the grid-point being considered.  This means that for each point, 
GEFS Reforecast MLP uses: 49 surrounding points x 12 fields x 9 output times = 5292 predictors, while 
GEFS Operational MLP uses 1 point x 18 fields x 8 output times + 1 latitude coordinate + 1 longitude 
coordinate = 146 predictors for Days 1-10, and 74 predictors for Days 11-15 (since those lead times only 
contain 6-hourly GEFS output resulting in 4 output times per day).  Third, for training, GEFS Operational 
MLP uses the ensemble mean of all 31 GEFS members, while GEFS Reforecast MLP is trained on the 
ensemble median of 5 GEFS reforecast members.  Fourth, GEFS Reforecast MLP performs training over 
4 distinct regions of the CONUS and stitches them together for a CONUS-wide forecast, while GEFS 
Operational MLP trains over the entire CONUS.  Finally, for forecast input, GEFS Reforecast MLP uses 
the median of the first 21 GEFS members, while GEFS Operational MLP uses the mean of all 31 GEFS 
members. Table 17 summarizes the main differences between the algorithms. 
 
Table 16 GEFS-based predictors used in GEFS-ops RF. 

GEFS Operational MLP Predictors 
(1) Bulk Shear (0-1 km AGL)* (8) Surface-based lifting condensation level 

(LCL) height 
(15) u-wind (10-m) 

(2) Bulk Shear (0-3 km AGL)* (9) Significant tornado parameter (STP)* (16) v-wind (10-m) 
(3) Bulk Shear (0-6 km AGL)* (10) Mean-sea-level pressure (17) Wind magnitude (10-m) 
(4) Surface-based convective available 
potential energy (CAPE) 

(11) Precipitable water (18) Most unstable CAPE* 

(5) Surface-based convective inhibition (12) Specific Humidity (2-m) (19) Latitude  
(6) Storm relative helicity (0-3 km) (13) Temperature (2-m) (20) Longitude 
(7) Lape Rate (700-500 mb)* (14) Precipitation (3-h accumulation)  

 

Table 17 Summary of differences between GEFS Operational MLP and GEFS Reforecast MLP. 

  GEFS Operational MLP GEFS Reforecast MLP 
Grid-spacing 81-km (interpolated) 55-km (0.5° x 0.5°) 

Training Ensemble mean of 31 GEFS operational 
members 

Ensemble median of 5 GEFS reforecast members 

Lead time Days 1-15 Days 1-8 

Products Total Severe Total Severe (Days 1-8), Hazard probs & Sig 
Severe (Days 1-3) 

Predictors 18 12 

Forecast input Mean of all 31 GEFS members Median of first 21 GEFS members 

Regional training? No (CONUS land points only) yes; 4 distinct regions over the CONUS 

Neighboring points used for predictors? no yes; 7 x 7 point surrounding box 

Latitude/longitude coordinate used for 
predictors? 

yes no 
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iii. Nadocast, HREF -based ML hazard probabilities (credit: Brian Hempel) 
 

Nadocast is a machine learning system, initially focused on tornadoes, that aims to produce 
timely, calibrated, severe weather probabilities on the Day 1 time scale (2-35 hours). Probabilities are 
generated by gradient-boosted decision trees trained on 10,000+ storm and storm-adjacent hours of 
HREF outputs. Nadocast performs extensive feature engineering: each grid point from the HREF hourly 
output is supplemented by adding spatial blurs of various radii, spatial gradients, parameters from 1 h 
future and 1 h past, summary statistics over a 3 h window, and additional information such as 
climatology and an estimate of recent convective forcing. To provide rotational invariance, winds at 
each grid point are rotated relative to an estimate of the 500m-5000m shear vector. The result is over 
10,000 features per grid point per hour, upon which the decision trees operate to produce hourly 
probabilities. To capture uncertainty at longer lead times, different models are trained for short- (2-
13hr), medium- (13-24hr), and longer-range (24-35hr) forecasts. Hourly probabilities are pooled into 
day-long guidance on a 15km grid and rescaled to follow the historical characteristics of SPC thresholds.  
 

iv. Machine Learning WoFS-PHI Spatial Hazard Probabilities (credit Eric Loken) 
 

WoFS-PHI is an RF-based product designed to predict severe weather hazard probabilities within 
a given spatial radius in 60-minute windows out to 3-4 hours of lead time. This year, a 39-km radius is 
used to align with the verification scales used by the SPC. Predictors are from WoFS forecast fields as 
well as gridded, spatiotemporally-extrapolated ProbSevere Version 2 (PS2) data (predictors are 
summarized in more detail in Table 18).  
 While the overall preprocessing approach of WoFS-PHI is similar to last year (Fig. 3), multiple 
important changes have been made to WoFS-PHI based on user feedback. First, this year, WoFS-PHI has 
been redesigned to predict 60-, rather than 30-minute, time windows to facilitate a real-time forecasting 
activity. During preprocessing, less smoothing has been applied to the predictors at longer lead times, 
which should result in less over-smoothing of the final forecast at these times. To increase probability 
sharpness and provide greater context into the meaning of probabilities, initial RF output probabilities 
are remapped to success ratios based on verification from an independent validation set during the 
training process. Final WoFS-PHI probabilities are the larger of the raw RF probabilities and the 
corresponding success ratio at each probability level. Additionally, this year two separate RF models are 
created for each hazard and lead time: one trained using only local storm reports (LSRs), and one using 
LSRs plus warnings. Training on warnings can be valuable because it enhances the spatial density of the 
predictand during training, which should help the RF learn more accurate and spatially-precise 
relationships between predictors and severe weather occurrence. However, one limitation is that not 
all warnings are associated with observed severe weather; thus, both the LSR-only- and LSR-and-
warnings-trained RFs are provided. Another notable change from last year is the introduction of two 
separate types of WoFS-PHI: forecast mode (Fig. 4) and warning mode (Fig. 5). Forecast mode is available 
under the “ML Products” tab of the WoFS Viewer and is run once per WoFS initialization. This mode 
allows users to look at severe weather hazard probabilities valid up to 4 hours after the current WoFS 
initialization. On the other hand, warning mode is available as an optional contour overlay (accessible 
on the right-hand-side of the WoFS Viewer). Unlike forecast mode, warning mode updates every 5-10 
minutes using the most recent PS2 and WoFS data available; however, it always displays the hazard 
probability for the next 60 minutes (starting from the current real time). Thus, forecast mode allows 
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users to look at longer, fixed lead times but takes longer to update, while warning mode updates more 
frequently but only allows users to view a single 60-minute forecast. Finally, this year WoFS-PHI uses a 
new color table designed to more clearly show the differences between probability levels.  
 During this SFE, a real-time forecasting activity will be held to test the impact of WoFS-PHI on 
(human-generated) real-time severe weather probability forecasts. During this activity, participants will 
be divided into two groups: one with access only to the traditional suite of (non-machine-learning) WoFS 
products, and one with access to the traditional WoFS products plus WoFS-PHI. Both groups will make 
two sets of 0-1- and 1-2-h severe weather hazard probability forecasts each afternoon. On Monday 
through Thursday, 2-4 National Weather Service forecasters will continue the activity into the evening 
so that data and feedback can be collected longer into each weather event. Participant forecasts will be 
subjectively evaluated during next-day evaluations. 
 
Table 18 Summary of predictors used to create WoFS-PHI spatial hazard probabilities. Predictors are taken from WoFS at the 

point of prediction (column 1), WoFS at multiple spatial neighborhoods (column 2), and PS2 at multiple spatial 
neighborhoods (column 3). 

Single-Point WoFS 
(Values taken from point of 

prediction only) 

Multiple-Point WoFS 
(Values taken from within 0, 15, 30, 
45, and 60km of point of prediction) 

Multiple-Point ProbSevere 
(Values taken from within 0, 15, 30, 45, 

and 60km of point of prediction) 

10-500m bulk wind shear 80m wind speed Raw expanded, extrapolated PS2 probability 
of hail, wind, and tornadoes 

10m wind components 1km Simulated reflectivity Spatially-smoothed expanded, extrapolated 
PS2 probability of hail, wind, and tornadoes 

2m temperature and dewpoint 0-2km vertical vorticity Age of storm object 
0-1, 0-3, and 0-6 km wind shear 
components 

0-2 and 2-5km updraft helicity Extrapolation lead time (minutes) 

0-500m, 0-1km, and 0-3km storm 
relative helicity (SRH) 

Updraft speed (1km and column-
maximum) 

14- and 30-minute hail, wind, and tornado PS2 
probability changes 

Surface-based CAPE Flash extent density (FED)   
Significant Tornado Parameter (STP); 
Traditional and using 0-500m SRH 

  
Downdraft speed 

  

Supercell Composite Parameter (SCP) Mean sea level and surface pressure   
Cloud Top Temperature Ensemble probability of reflectivity 

exceeding 40 dBZ 
  

Surface-based LCL Individual-member 2-5km updraft helicity   
Predicted Hail     
Freezing Level     
Latitude & Longitude     
WoFS x and y grid points 

  

WoFS initialization time 
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Figure 3 Flowchart showing the preprocessing steps used to create WoFS-PHI spatial hazard probabilities. Steps associated 

with the PS2, WoFS, and combined data, respectively, are colored in blue, red, and black.  

 

 
Figure 4 Example WoFS-PHI Forecast Mode severe wind probabilities, from the model trained on local storm reports plus 

warnings. WoFS-PHI Forecast Mode can be accessed under the “WoFS PHI” heading for each hazard under the “ML 
Products” tab in the WoFS Viewer. Users can select either “39 km LSR’s” for the model trained only on LSRs or “39 km 
LSR’s + Warnings” for the model trained on both LSRs and warnings. 
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Figure 5 Example WoFS-PHI Warning Mode severe wind probabilities (contoured) overlaid on simulated reflectivity from WoFS 

member 1 (filled). Here, the WoFS-PHI probabilities are from the model trained on local storm reports plus warnings. 
WoFS-PHI warning mode contours are toggle-able based on the checkboxes in the lower right-hand corner of the WoFS 
Viewer. 

 

v. SPC Timing Guidance (credit: Israel Jirak)  
 
SPC Timing Guidance products (valid over 4-h time windows throughout the convective day) are 

generated for tornadoes, wind, and hail.  These products are created by using different datasets (i.e., 
HREF/GEFS calibrated severe and Nadocast) that contain hourly 4-h timing information to distribute 
probabilities from the SPC outlooks across the 16 to 12 UTC time frame.  Thus, they are a blend of the 
human forecast and various probabilistic calibrated guidance products.   
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vi. NSF NCAR ML-derived extended-range FV3-based convective hazard probabilities 
 
For the 2024 HWT SFE, gridded machine learning-based probabilistic convective hazard guidance 

is being generated using neural networks (NNs) and the 10-member real-time FV3-based (C-SHiELD) 
ensemble forecasts generated at NSF NCAR (i.e., NCAR FV3; Table 10). The ML forecasts will extend to 
8.5 days lead-time and were constructed to be similar to HRRR and WRF-based ML guidance evaluated 
in prior HWT SFEs. More specifically, the NNs were trained (Table 19) using a training dataset of 91 
deterministic 00 UTC-initialized FV3-based (C-SHiELD) forecasts from 1 April 2022 – 30 June 2022. A set 
of 28 diagnostics (Table 20) from the training data were upscaled onto an 80-km grid while an additional 
22 “neighborhood” predictors were constructed by taking the 5 environmental and 6 explicit predictors 
and computing means (for the environmental predictors) and maxima (for the explicit predictors) in 
space and time over 3x3x3 and 5x5x5 arrays of 80-km grid boxes. 

Each grid box was labeled as a “hit” if a severe weather report occurred within a 4 h and 40-km 
or 120-km window of the grid box center point. The NNs were designed to output six independent 
probabilities: probability of hail, wind, tornado, significant hail, significant wind, or any storm report. 
The same NNs were applied to each ensemble member, with the 10-member average probability used 
for evaluation. 

 
Table 19 Settings used to construct and train the NNs. Ten NNs with different initial weights were trained separately with their 

output probabilities averaged together. 

Neural network hyperparameter Value 
Number of hidden layers 1 

Number of neurons in hidden layer 16 
Dropout rate 0 
Learning rate 0.001 

Number of training epochs 10 
Hidden layer activation function Rectified Linear Unit 
Output layer activation function Sigmoid 

Optimizer Adam 
Loss function Binary Cross-entropy 

Batch size 1024 
Regularization None 

Batch normalization On 
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Table 20 The 33 base predictors used to train the NNs (28 diagnostics and 5 static fields). The mean of the environmental and 
upper-air fields, and the maximum of the explicit fields, within each 80-km grid box, was used as input into the NNs. 
Neighborhood predictors were also constructed by taking larger spatial and temporal means and maximums of the 
environmental and explicit fields as described in the text. 

Base Predictor Type 
Forecast Hour Static 
Local Solar Hour Static 
Latitude Static 
Longitude Static 
Day of Year Static 
Surface-based CAPE Environment 
Surface-based CIN Environment 
2-m Temperature Environment 
2-m Dewpoint Temperature Environment 
Mean Sea Level Pressure Environment 
Hourly-maximum 2–5km UH Explicit 
Hourly-minimum 2–5km UH (negative) Explicit 
Hourly-maximum updraft speed below 400 hPa Explicit 
Hourly-minimum downdraft speed below 400 hPa Explicit 
Hourly-maximum 10-m wind speed Explicit 
Hourly-maximum composite reflectivity Explicit 
700 hPa – 500 hPa lapse rate Upper-air 
925 hPa, 850 hPa, 700 hPa, and 500 hPa zonal wind Upper-air 
925 hPa, 850 hPa, 700 hPa, and 500 hPa meridional wind Upper-air 
925 hPa, 850 hPa, 700 hPa, and 500 hPa height Upper-air 
925 hPa, 850 hPa, 700 hPa, and 500 hPa temperature Upper-air 
 
 

vii. WoFS-based ML Hazard Guidance 
 
The gridded machine-learning (ML) based guidance is a new WoFS-based product designed to 

provide advance notice for the occurrence of severe weather at lead times of 2-6 hours. For each six-
hour forecast launched by the WoFS, ML guidance is generated for severe wind, severe hail, and 
tornadoes (e.g., Fig. 6). The guidance is valid over the full four-hour window (hours 2-6) and indicates 
the probability of the respective hazard occurring within 36 km of a grid point (similar to the SPC 
definition). 

Separate histogram-based gradient boosting trees (HGBT) models were trained to predict the 
individual hazards, as well as whether any of the three hazards are possible (“any-severe”), using data 
exclusively from WoFS forecasts. These data include information from the WoFS ensemble about 
various storm and environmental fields at multiple spatial scales.  During the training process, the W2W 
guidance was verified using NOAA storm data reports. For each hazard, the WoFS ML guidance is shown 
to be more skillful than non-ML baselines with skill increasing substantially after convective initiation 
has occurred and been assimilated into the WoFS. 
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Figure 6 Example forecast of any severe weather report within 36-km of a point over a 4 h time period. 

 
f) SPC Impacts System 
 

SPC maintains an internal analytics system (e.g., Clark et al 2019) for quantifying the number of 
tornadoes and their potential impacts to society, using the Day 1 tornado forecast (both coverage and 
conditional intensity forecasts) as the initial input. From this input, the system runs a series of Monte-
Carlo-like simulations (currently set to n=10000 simulations) that draw from a number of historical 
distributions (tornado frequency per unit area, tornado rating, path length, direction) to produce n 
possible realizations of a tornado day. Each of these realizations are then overlaid on 1-km gridded 
societal data (e.g., population, schools) from the 2020 Census, such that the potential impact to society 
from each tornado (and thus each realization) can also be quantified. Additionally, a machine-
learning/regression workflow (trained on historical tornadoes from 1999 to 2021) is used to predict a 
number of injuries and fatalities associated with each tornado.  

With impact numbers across each of these realizations, the resultant distributions of potential 
impacts can be used to calculate descriptive statistics (e.g., 25th percentile, median, 75th percentile). 
Box-and-whisker plots are generated for the number of tornadoes (organized by rating), the number of 
injuries and fatalities, and the number of potential population, schools, and mobile homes impacted 
(e.g., Fig. 8). Thus, this system can be used to convert human-generated tornado forecasts into 
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quantifiable impact data that can be communicated to partners in emergency management, etc. for 
improved preparedness. 
 

 
 
Figure 7 An example of tornado count and impact output from the IMPACTS system. Boxes represent the 25th-75th percentiles, 

while whiskers represent the 10th-25th and 75th-90th percentiles. The values of the 25th, 50th (median), and 75th 
percentiles are annotated on the individual box-and-whisker charts. 

 

3. SFE 2024 Core Interests and Daily Activities 
 
 2024 SFE activities will occur from 9am-4pm CDT on Mondays, and 8:45am-4pm Tuesday-Friday 
with an optional 8-8:45am period for map analysis, data loading, and networking.  Additionally, there 
will be an evening activity for which 2-4 NWS forecasters will issue 1-h experimental severe weather 
outlooks using WoFS-PHI from 12-8pm on Mondays and 2-8pm Tuesday-Thursday. The evening activity 
will not operate on Fridays. Each day will have a lunch break from 12:30-2pm CDT.  On Wednesdays 
there will be an optional science panel discussion from 1:15-2pm. Tables 21 and 22 provide a daily 
schedule for Monday, and Tuesday-Friday, respectively. Tables 23 and 24 provide the schedule for the 
evening forecasting activity. Further details are provided in subsequent sections. 
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Table 21 Schedule for Monday morning and afternoon.  

Time (CDT) 
 

9:00 AM – 9:45 AM  Welcome and Introductions 
Hybrid All (Israel Jirak & Participants) 

9:45 AM – 10:30 AM HWT SFE Scientific Objectives and Goals 
Hybrid All (Israel Jirak & Adam Clark) 

10:30 AM – 10:45 AM Break 
Fill out IRB Consent Form, Program CACs 

10:45 AM – 11:00 AM Conditional Intensity Forecasting Overview 
Hybrid All (Israel Jirak) 

11:00 AM – 11:15 AM Weather Briefing 
Hybrid All (David Imy) 

11:15 AM – 12:30 PM Group Forecasting Activity (Coverage and Conditional Intensity Outlooks)  
In-Person R2O (Day 1); In-Person Innovation (Days 3 & 4); Virtual (Day 2) 

12:30 PM – 2:00 PM Lunch/Break 
2:00 PM – 2:15 PM Update on Today’s Weather 

Hybrid All (David Imy) 
2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions and Discussion) 

In-Person R2O (Meso-beta MD); In-Person Innovation (WoFS PHI); Virtual (WoFS PHI) 
3:15 PM – 4:00 PM Individual Forecasting Activity Continued (MD & Day 1 Updates) 

In-Person R2O (Day 1 Update); In-Person Innovation (WoFS PHI); Virtual (WoFS PHI) 
 

Table 22 Schedule for Tuesday – Friday morning and afternoon. 

Time (CDT) 
 

8:00 AM – 8:45 AM  (Optional) Map Analysis, Data Loading, and Networking 
In-Person (Optional) 

8:45 AM – 9:00 AM  Overview of Yesterday’s Severe Weather 
Hybrid All (David Imy) 

9:00 AM – 10:30 AM Model & Outlook Evaluation (Orientation, Surveys, and Discussion) 
Hybrid Groups (Group 1; Group 2; Group 3) 

10:30 AM – 10:45 AM Break 
10:45 AM –  11:00 AM Evaluation Highlights 

Hybrid All (Group 1; Group 2; Group 3) 
11:00 AM – 11:15 AM Weather Briefing 

Hybrid All (David Imy) 
11:15 AM – 12:30 PM Group Forecasting Activity (Coverage and Conditional Intensity Outlooks)  

In-Person R2O (Day 1); In-Person Innovation (Days 3 & 4); Virtual (Day 2) 
12:30 PM – 2:00 PM Lunch/Break 

Science Discussion (Wednesdays @ 1:15) 
2:00 PM – 2:15 PM Update on Today’s Weather 

Hybrid All (David Imy) 
2:15 PM – 3:15 PM Individual Forecasting Activity (Mesoscale Discussions and Discussion) 

In-Person R2O (Meso-beta MD); In-Person Innovation (WoFS PHI); Virtual (WoFS PHI) 
3:15 PM – 4:00 PM Individual Forecasting Activity Continued (MD & Day 1 Updates) 

In-Person R2O (Day 1 Update); In-Person Innovation (WoFS PHI); Virtual (WoFS PHI) 
 



 

 
25 

Table 23 Schedule for Monday evening activity. 

Time (CDT) 
 

12:00 PM – 2:00 PM WoFS-PHI Introduction and Training 
Evening Forecasters 

2:00 PM – 2:15 PM Update on Today’s Weather 
Hybrid All & Evening Forecasters (David Imy) 

2:15 PM – 3:15 PM Individual Forecasting Activity (WoFS PHI) 
In-Person Innovation (WoFS PHI); Virtual & Evening Forecasters (WoFS PHI) 

3:15 PM – 4:00 PM Individual Forecasting Activity (WoFS PHI) 
In-Person Innovation (WoFS PHI); Virtual & Evening Forecasters (WoFS PHI) 

4:00 PM – 8:00 PM Individual Forecasting Activity 
Evening Forecasters (WoFS PHI) 

 
Table 24 Schedule for Tuesday – Thursday evening activity.  

Time (CDT) 
 

2:00 PM – 2:15 PM Update on Today’s Weather 
Hybrid All & Evening Forecasters (David Imy) 

2:15 PM – 3:15 PM Individual Forecasting Activity (WoFS PHI) 
In-Person Innovation (WoFS PHI); Virtual & Evening Forecasters (WoFS PHI) 

3:15 PM – 4:00 PM Individual Forecasting Activity (WoFS PHI) 
In-Person Innovation (WoFS PHI); Virtual & Evening Forecasters (WoFS PHI) 

4:00 PM – 8:00 PM Individual Forecasting Activity 
Evening Forecasters (WoFS PHI) 

 
 
a. Formal Evaluation Activities 
 

SFE 2024 will feature one period of formal evaluation from 9-11:00am CDT Tuesday-Friday.  The 
evaluations will be done in three hybrid groups (i.e., each group will have in-person and virtual 
participants) and involve comparisons of different ensemble diagnostics, CLUE ensemble subsets, and 
other products and guidance.  Additionally, the evaluations of yesterday’s experimental forecast 
products will be conducted during this time.  Participants will be split into Groups 1, 2, & 3, which will 
each conduct a separate set of evaluations.  In each group, for each set of evaluations, a short tutorial 
will be presented and then participants will conduct the evaluations independently while facilitators 
remain available for questions.  Following each set of evaluations, there will be a short discussion period 
during which participants can discuss noteworthy aspects of the evaluations, evaluation philosophy, 
questions, or any other topics related to the evaluations.  The evaluations will end at 10:30am, followed 
by a 15-minute break, and from 10:45-11:00am each evaluation group will have 5 minutes to discuss 
highlights from their group with all participants.  The evaluations are categorized as “CAM (E)nsembles”, 
“(D)eterministic CAMs”, “(A)nalyses”, “(C)alibrated Guidance”, “(O)utlooks”, and “(A)rtificial 
(I)ntelligence”. The letter in parentheses combined with a number is used to label the individual 
evaluations in each category (e.g., E1 refers to the first CAM Ensemble evaluation).  Each evaluation 
group will conduct a mix of evaluations from each category.  The evaluations in each category are 
summarized below: 
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(C)alibrated Guidance 
 
C1. Day 1 & 2 4-h SPC Tornado Timing Guidance 
  
 Timing guidance (TG) products are generated from (1) HREF/GEFS and (2) Nadocast calibrated 
tornado probabilities to produce tornado guidance valid in hourly 4-h time windows that is consistent 
with the operational SPC outlook. For each of the timing guidance products, timing information is used 
to distribute probabilities from the SPC outlooks across the 16 to 12 UTC time frame on both Day 1 and 
Day 2.  Both HREF/GEFS TG and Nadocast TG products are subjectively rated for Day 1 and Day 2. 
 
C2. Day 1 & 2 4-h SPC Hail Timing Guidance 
 
 The same methods and products as in C1 are rated for Hail timing guidance.  
 
C3. Day 1 & 2 4-h SPC Wind Timing Guidance 
 
 The same methods and products as in C1 are rated for Wind timing guidance.  
 
C4. 4-h ML Hazard Guidance 
 
 This evaluation compares new gridded WoFS-based ML guidance for individual hazards to the 
HREF-based Nadocast guidance.  Specifically, this evaluation will examine severe weather probabilities 
for two 4-h periods: 20-00Z (comparing 12Z HREF-based Nadocast and 18Z WoFS-based ML) and 00-04Z 
(comparing 12Z HREF-based Nadocast and 22Z WoFS-based ML). 
 
C5. Medium Range 00Z Total Severe  
 
 Three different sets of extended range total severe probabilities for Day 3-7 lead times are 
subjectively rated.  These methods include: (1) GEFS Reforecast MLP, (2) GEFS Operational MLP, and (3) 
NCAR CAM MLP. 
 
Primary Science Question(s): What are the strengths and weaknesses of the various calibrated hazard 
guidance, and what are the best approaches and techniques to develop calibrated hazard probabilities? 
 
(O)utlook Evaluations 
 
O1. Day 1/2/3/4 Outlooks 
 
 The experimental Day 1-3 outlooks for tornado, wind, and hail, and Day 4 outlook for total severe 
produced by SFE teams are subjectively rated and compared. 
 
O2. Day 1 Outlook Update (w/ WoFS) 
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 The Day 1 outlooks for tornado, wind, and hail are compared to the Day 1 outlook updates, which 
are produced utilizing WoFS by Forecaster #1, Forecaster #2, and a consensus of non-forecaster 
participants.   
 
Primary Science Question(s): How does the skill for tornado, hail, and wind severe outlooks vary with 
increasing lead time?  How skillful are the Day 4 total severe outlooks and was CAM guidance useful at 
this lead time? 
 
O3.  SPC Impacts System: Day 1 Outlook Tornado Counts and Impacts 
 
 The SPC Impacts System is run on the Day 1 tornado outlooks with conditional intensity 
information to estimate the number of tornadoes by EF scale and the potential societal impacts. 
 
Primary Science Question(s): Would this information be helpful in communicating the potential severe 
weather impacts on a given day?  What is the best way to visualize this information? 
 
O4. Probabilistic 0-1 h Outlooks 
 
 Using WoFS-PHI and any other guidance, 0-1 h outlooks for tornado, wind, and hail, are produced 
by Forecaster #1, Forecaster #2, and a consensus of non-forecaster participants.  These outlooks are 
subjectively rated and compared to another set of the same outlooks issued by participants without 
access to WoFS-PHI.  
 
O5. Probabilistic 1-2 h Outlooks 
 
 This evaluation is the same as O4, but for 1-2 h lead times.  
 
Primary Science Question(s): How does access to WoFS-PHI impact the quality of severe weather 
guidance issued by forecasters in the 0-2 h lead time range? 
 
CAM (E)nsembles  
 
E1. CLUE: 00Z RRFS vs. HREF 
 
 This evaluation will feature an in-depth examination of severe storm attribute and 
environmental fields from 00Z initialized versions of EMC REFS and HREF for Day 1 lead times.  These 
comparisons will serve to unearth ways in which the currently operational CAM ensemble (i.e., HREF) 
differs from the candidate to replace it (i.e., EMC REFS), and whether the EMC REFS improves upon or 
degrades forecasts of the HREF for fields relevant to forecasting severe weather. A greater number of 
fields will be available for this comparison relative to other comparisons, allowing for participants to 
examine more facets of the guidance and identify potential contributions to severe convective hazard 
forecast success or failure.  
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Primary Science Question(s): How do probabilistic forecasts of EMC REFS compare to those of the HREF 
(e.g., spread and skill)? Are there systematic shortcomings or advantages of EMC REFS?  
 
E2. CLUE: 12Z Day 1 Ensemble Flagships 
 
 The four different versions of REFS will be examined at Day 1 lead times to assess whether they 
can meet or exceed the skill of the operational baseline of HREF.  Subjective ratings will be assigned to 
the following ensembles based at 12Z: (1) EMC REFS, (2) SPC REFS, (3) SPEC REFS ARW, (4) MPAS REFS, 
and (5) HREF.  
 
E3. CLUE: Day 2 Ensemble Flagships 
 
 This evaluation is the same as E2, except Day 2 lead times are assessed.  
 
Primary Science Question(s): What are the optimal configuration strategies for REFS?  Does including a 
larger proportion of control members result in a more accurate and reliable ensemble?  What is the 
impact of replacing FV3 members with MPAS members in REFS? 
 
E4. CLUE: Medium-Range Lead Time/Core/Members 
 
 Subjective ratings of forecast skill are assigned to CAM ensemble guidance from a 5-member 
subset of the NCAR FV3 and 5-member MPAS ensemble at lead times of 3-5 days.  Additionally, 
subjective ratings are assigned to the 10-member NCAR FV3 for lead times of 3-7 days. 
 
Primary Science Question(s): How does CAM ensemble forecast skill vary with increasing lead time?  
What is the maximum lead time at which CAM ensembles have value? What are the differences in 
forecast quality and characteristics between the FV3 and MPAS model cores for lead times of 3-5 days? 
 
(D)eterministic CAMs 
 
D1. CLUE: 00Z Day 1 Deterministic Flagships 
 

This activity will focus on rating the primary deterministic CAMs provided by several SFE 
collaborators – GFDL (GFDL FV3), NSSL (NSSL MPAS HT), EMC/GSL (RRFS), and NASA (NASA FV3) – based 
on their skill and utility for severe weather forecasting at Day 1 lead times. These runs will be compared 
to the operational HRRR, which was developed by GSL.   Particular attention will be given to simulated 
storm structure, convective evolution, and location/coverage of storms. Storm surrogate fields, like 
hourly maximum updraft helicity, will also be examined to gauge their utility for forecasting severe 
storms.    
 
Primary Science Question(s): How do various deterministic CAMs compare to the operational standard 
for convective forecasting (i.e., WRF-ARW-based HRRRv4)? 
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D2. CLUE: 12Z Day 2 Deterministic Flagships 
 
 Four deterministic, 12Z initialized, CAM configurations are subjectively evaluated for Day 2 lead 
times.  These configurations include: (1) RRFS, (2) NSSL MPAS HT, (3) NASA FV3, and (4) HRRR.  
 
Primary Science Question(s): What strategies for CAM configurations perform the best at Day 2 lead 
times, and what are their forecast characteristics at Day 2 lead times for severe weather forecasting 
applications? 
 
D3. CLUE: RRFS vs. HRRR 
 
 This activity will feature a "deeper dive" into storm attribute and environmental fields in HRRR 
and RRFS.  These comparisons will serve to unearth ways in which the currently operational CAM (the 
HRRR) differs from a candidate to replace it (the RRFS), and whether the RRFS improves upon or 
degrades forecasts of the HRRR for fields relevant to forecasting severe weather. A greater number of 
fields will be available for this comparison relative to other comparisons, allowing for participants to 
examine more facets of the guidance and identify potential contributions to severe convective hazard 
forecast success or failure.  
 
Primary Science Question(s): How do forecasts of the RRFS compare to those of the HRRR? Are there 
systematic shortcomings or advantages of the RRFS? 
 
D4. CLUE: RRFS vs. HRRR DA 
 
 The HRRR and RRFS are examined in the first 12 hours of the forecast period for 21 and 00Z 
initializations to evaluate the impact of their data assimilation. 
 
Primary Science Question(s): How do the data assimilation strategies in HRRR and RRFS impact short-
term convective weather forecasts? 
 
D5. CLUE: 00Z MPAS Resolution Sensitivity 
 
 Similarly configured 2-, 3-, and 4-km grid-spacing versions of MPAS will be evaluated to assess 
MPAS resolution sensitivities. These configurations are: MPAS2, NSSL-MPAS-HN, and MPAS4, 
respectively.  
 
Primary Science Question(s): How are the impacts of a slight increase and decrease in grid-spacing 
relative to the standard 3-km grid-spacing in MPAS?  Does using 4-km or 2-km grid-spacing noticeable 
improve or degrade forecast quality relative to 3-km?  
 
D6. CLUE: 1-km vs. 3-km 
 
 This comparison will focus on comparing the NSSL1 and HRRR configurations of WRF-ARW, which 
have 1- and 3-km grid-spacing, respectively.  Particular attention will be given to unique storm attribute 
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fields such as 0-1 km AGL UH and 0-2 km AGL maximum wind.  It is hypothesized that for these fields, 
the enhanced resolution of NSSL1 will provide improved guidance for hazards like tornadoes, whose 
parent mesocyclones and associated low-level rotation are better resolved using 1-km grid-spacing, and 
wind, which is better resolved at higher resolutions.   
 
Primary Science Question(s): Does decreasing horizontal grid-spacing from 3- to 1-km provide benefits 
when utilizing storm diagnostics that reflect the intensity of low-level rotation important for tornado 
prediction and the strength of convective wind gusts?   
 
(A)nalyses 
 
A1. Mesoscale Analysis Background  
 
 Hourly versions of the 3D-RTMA using HRRR as the background (3D-RTMA HRRR) will be 
compared to another version using RRFS as the background (3D-RTMA RRFS) to assess the role that the 
background first-guess plays on the final analysis.  Comparisons will also be made to a 3-km grid-spacing 
version of the sfcOA that uses HRRR forecasts as the background (sfcOA HRRR) and applies a simple 2-
pass Barnes objective analysis to incorporate the latest surface observations. The goal is to assess the 
utility of these analysis systems for situational awareness and short-term forecasting for convective-
weather scenarios.  
 
Primary Science Question(s): What are the optimal methods for producing quality mesoscale analyses 
for convective forecasting applications? 
 
A2. Upscaled Mesoscale Analysis Background 
 
 3D-RTMA HRRR, 3D-RTMA RRFS, and sfcOA HRRR will be upscaled to a 40-km grid and compared 
to the 40-km grid-spacing sfcOA that uses the RAP as the background.    
 
Primary Science Question(s): What are the optimal methods for producing quality mesoscale analyses 
for convective forecasting applications? 
 
A3. Storm Scale Analysis 
 

WoFS-based “analyses” (actually 15-minute maximum forecasts) of 80-m wind are compared to 
preliminary local storm reports, including gust measurements and estimates.  Additionally, similar 
WoFS-based, 15-minute maximum 2-5 km AGL UH and updraft speed are compared to MRMS Mid-Level 
Rotation Tracks (MLRT) and MRMS MESH, respectively.     
  
Primary Science Question(s): Can a high resolution, rapidly updating ensemble DA system serve as a 
verification source for severe winds, mesocyclone tracks, and hail?   
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(A)rtificial (I)ntelligence Evaluations 
 
AI1. First-Guess Watch Guidance 
 
 The first-guess watch guidance is a suite of machine learning models developed by CIWRO/SPC 
to predict where and when conditions will be favorable for a watch.  This guidance is derived from 
multiple gradient-boosted classifiers trained on HREF environmental fields and storm-derived 
parameters, and the guidance is designed to provide at least 3 hours of lead time prior to the first 
occurrence of severe weather.  Estimated watch counties are inferred at each 12z HREF forecast hour 
from the ML probabilistic output and masked such that a county must fall within at least a 13z D1 
Marginal risk to qualify for a watch.  New to this year, the watch guidance also estimates whether a 
tornado or severe thunderstorm watch would be more appropriate for the forecast conditions.   
 Participants will subjectively evaluate the first-guess watch guidance by comparing the 
placement, timing, and type of recommended watch to the true severe thunderstorm and tornado 
watches issued by the NWS.  These evaluations may also consider any tornado or severe thunderstorm 
warnings that were issued during the evaluation period, as well as any local storm reports that were 
received to better assess the skill of the guidance. 
 
Primary Science Question(s): Can ML be used to produce a skillful first-guess watch product that provides 
value to forecasters during and prior to severe weather events?  How well do the first-guess watches 
capture the location and timing of severe weather warnings and reports?  How well does the 
recommended watch type align with what is issued by the NWS?  Is the recommended watch type 
appropriate for the observed hazards? 
 
AI2. Global NWP Emulators 
 
 GraphCast, Pangu Weather, and FourCastNet AI-driven global weather predictions starting with 
GFS initial conditions will be assessed, compared, compared and subjectively rated alongside the GFS. 
The target lead time will be 7 days (i.e. forecast hours 156-180) and all 5 times (12, 18, 00, 06, and 12Z) 
that fall within the convective day will be considered. Participants will primarily consider the 500-mb 
height-wind patterns, but will use other available fields (e.g., 850 mb heights/winds, 2-m temperatures, 
etc.) to supplement their ratings. Participants will further assess the vertical coherency of the models by 
reviewing derived sounding profiles at select locations across the CONUS. Finally, the 7-day QPFs in the 
NWP emulators that have QPF available will also be subjectively rated alongside the GFS.  
 
Primary Science Question(s): How do forecasts from NWP Emulators compare to traditional NWP 
forecasts? Is there value in the NWP emulators for extended range severe weather forecasting 
applications? 
  
b. Forecast Products and Activities 
 
 There will be two periods of experimental forecast activities during SFE 2024.  The first will occur 
from 11:00am – 12:30pm CDT and will focus on generating probabilistic outlooks for individual hazards, 
as well as more precise information on the intensity of specific hazards.  Participants will be split into 
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three groups: (1) In-Person R2O, (2) In-Person Innovation, and (3) Virtual.  As the naming convention 
suggests, in-person participants will be in R2O and Innovation groups, while all virtual participants will 
be in the Virtual group.  The In-Person R2O group will issue products for Day 1, the Virtual group will 
issue products for Day 2, and the In-Person Innovation group will issue products for Days 3 & 4. The 
experimental forecasts will cover a limited-area domain typically covering the primary severe threat 
area with a center-point selected base on existing SPC outlooks and/or where interesting convective 
forecast challenges are expected.  The Day 3 & 4 forecast is the only exception to the smaller domain, 
and will instead cover a full CONUS domain.  Also, the Day 4 outlooks will only cover total severe (i.e., 
no individual hazards or conditional intensity forecasts). 

In all groups, the morning forecasts will be done collectively.  The individual hazard forecasts will 
mimic the SPC operational Day 1 & 2 Convective Outlooks by producing individual probabilistic coverage 
forecasts of large hail, damaging wind, and tornadoes within 25 miles (40 km) of a point.  The Day 1 
outlooks will cover the period 1800 UTC to 1200 UTC the next day, while the Days 2, 3, & 4 outlooks will 
cover 1200 – 1200 UTC periods.  Additionally, for experimental outlooks covering Days 1, 2, & 3, 
conditional intensity forecasts of tornado, wind, and hail will be issued, in which areas are delineated 
with reports that are expected to follow intensity distributions defined by conditional intensity groups 
(see more information below).  These conditional intensity forecasts are similar to those issued during 
SFEs 2019-2023.  When generating Day 1 Convective Outlooks, SPC forecasters draw probabilities that 
represent the chance of each hazard occurring within 25 miles of a point. Forecasters can also delineate 
“hatched” areas, which represent regions with a 10% chance or greater of significant severe weather 
(EF-2 or greater tornadoes, winds ≥ 65 kts, or hail ≥ 2-in.) within 25 miles of a point. Research by the SPC 
has shown that current coverage forecasts include intensity information that is not explicitly 
communicated to users, so coverage forecasts and intensity forecasts could be better 
labeled/communicated. These results have been used to identify four conditional intensity groups (CIG) 
that can be forecast via examination of the atmospheric environment: no CIG, CIG 0, CIG 1, and CIG 2. 
In plain language, CIG 0 refers to a typical severe weather day, where significant severe weather is 
unlikely, CIG 1 areas indicate where significant severe weather is possible, and CIG 2 areas indicate 
where high impact significant severe weather is expected.  All groups will have access to all available 
operational and experimental guidance products for issuing their outlooks. 

The second period of experimental forecasting activities will occur during the 2-4pm CDT time 
period.  From 2-2:15pm CDT, a weather briefing led by Dave Imy will be conducted for all participants 
during which an update on current weather will be given. In the In-Person R2O group, the 2:15-3:15pm 
CDT time period will be devoted to an activity in which each participant will create their own Mesoscale 
Discussion (MD) Product using WoFS and other available CAM guidance within the SFE Drawing Tool.  
Then, during the 3:15-4pm CDT time period, each In-Person R2O participant will use WoFS and other 
available guidance to update the Day 1 individual hazard coverage and conditional intensity forecasts 
for the period 2100 – 1200 UTC. 

During the 2:15-4pm CDT time period in the In-Person Innovation Group and Virtual Group, 
participants will split into two groups and generate experimental 0-1 and 1-2 h hazard probabilities for 
tornado, wind, and hail.  The first set of forecasts is due at 3pm CDT and covers 3-4pm (0-1 h) and 4-
5pm (1-2 h). The second set of forecasts is due at 4pm and covers 4-5pm (0-1 h) and 5-6pm (1-2 h). One 
group issuing these forecasts will have access to WoFS PHI and any other guidance.  The other group 
will not have access to WoFS PHI. In both groups, two expert forecasters will be assigned whose 
forecasts will be evaluated the next day.  All other participant forecasts will be combined into consensus 
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forecasts, which will also be evaluated the next day. A small group of pre-determined “evening 
forecasters” will continue this activity into the evening.  They will take a break from 4-5pm, then from 
5-6pm issue 0-1 h and 1-2 h forecasts valid 6-7pm and 7-8pm, respectively.  They will repeat the activity 
one more time from 6-7pm with all forecasts shifted one hour later, and finally from 7-8pm finish by 
completing a survey on their use of WoFS and WoFS PHI.  

These WoF activities are the eighth year WoFS has been tested in the SFE to explore the potential 
utility of WoF products for issuing guidance between the watch and warning time scales (i.e. 0.5 to 6-h 
lead times). These activities explore ways of seamlessly merging probabilistic severe weather outlooks 
with probabilistic severe weather warnings as part of NOAA’s Warn-on-Forecast (WoF; Stensrud et al. 
2009) and Forecasting a Continuum of Environmental Threats (FACETs; Rothfusz et al. 2018) initiatives. 
These efforts also support the transition to higher temporal resolution forecasts at the SPC. 
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Appendix A: List of scheduled SFE 2024 participants.  Green denotes participants that are observing and not 
directly participating in activities.  

Week 1 Week 2 Week 3 Week 4 Week 5 
29 April - May 3 6-10 May 13-17 May 20-24 May 28-31 May 

Monte Flora (CIWRO/NSSL) Tom Galarneau (NSSL) Harald Richter (BoM) Harald Richter (BoM) Cameron Homeyer (OU) 

Youngsun Jung (NWS/OSTI) Luke LeBel (PSU) Bill Gallus (ISU) Tony Lyza (NSSL) Tyler Janoski (NSSL) 

Tom Hultquist (NWS/AFS) Derek Stratman (CIWRO/NSSL) Sam Ritter (ISU) 
Isabelle Jernigan 
(OU/CIWRO/NSSL) Craig Schwartz (NCAR) 

Vanderlai Vargas (DTC/GSL) Corey Potvin (NSSL) Aaron Hill (OU; M-Th) Steven Cavallo (OU) Will Mayfield (NCAR) 

Miranda Silcott (CIWRO/NSSL) Maria Madsen (OU/AI2ES) Steve Willington (UK Met) 
Gretchen Mullendore (NCAR; M-
Th) Jeff Beck (DTC) 

Phil Pegion (PSL) Nick Esposito (EMC) Mike Silverstone (UK Met) Steve Willington (UK Met) Brice Coffer (NCSU) 

Matt Morris (EMC) Junjun Hu (GSL) Marcel Caron (EMC) Mike Silverstone (UK Met) Alex Anderson-Frey (UW) 

Christopher Melick (16WS) Michael Hosek (OU) Aaron Treadway (NWS/AFS) Ryan Sobash (NCAR) Miles Epstein (UW) 

Michael Lee (NWS PHI) Mike Kavulich (DTC) Morgan Schneider (OU) Ayesha Ghani (OU) Henry Hua (UW) 

Greg DeVoir (NWS CTP) Ryan Barnes (SPC) Clark Evans (UWM) Ben Blake (EMC) Eddie Wolff (U. Illinois) 

Mateusz Taszarek (AMU; Poland) Derek Hodges (NWS TSA) Lee Hawkness-Smith (UK Met) Steve Lack (16WS) Aaron Hardin (NWS TWC) 

Krzysztof Piasecki (AMU; Poland) Ivan Gumbs (NWS FSD) Seb Cole (UK Met) Milind Sharma (TAMU) 
Russell Danielson (NWS 
BOU) 

 Michael Lowe (NWS WDTD) Jeff Duda (GSL) Devin Bissell (TAMU)  

 Bill Putman (NASA) Geoffrey Heidelberger (NWS HUN) Stan Czyzyk (NWS VEF)  

 Scott Rabenhorst (NASA) Connor Belak (NWS LWX) Kristian Oliver (NWS TAE)  

  Mike Jurewicz (NWS CTP) Lexy Elizalde (NWS WDTD)  
Daniel Liota (ECCC; T)  Heather Pimiskern (ECCC; T)   
Mariane Peltier-Champigny (ECCC; T)  Rose Carlsen (ECCC; T)   

***** VIRTUAL PARTICIPATION ***** 

Bob Rozumalski (NWS/FDTD) Aurore Porson (UK Met) Eric Aligo (EMC) Jason Jordan (NWS/FDTD) Jili Dong (EMC) 

Marion Mittermaier (UK Met; a.m. 
only) Michelle Harrold (DTC) Carlo Cafaro (UK Met) Gang Zhao (EMC) Ed Colon (EMC) 

Rob Hepper (NWS AWC) Shun Liu (EMC) Craig Hartsough (GSL) Terri Adams (Howard) Ruifang Li (GSL) 

Donnie Lippi (EMC) Gerard Ketefian (DTC/GSL) Cansu Duzgun (FSU) Dirk Petersen (WFO OAX; T-Th) David Dowell (GSL) 

Terra Ladwig (GSL) David Ahijevych (NCAR) David Zaff (NWS BUF) Curtis Alexander (GSL) Dan Baumgardt (NWS ARX) 

Robin Tamamachi (Purdue) Matt Pyle (EMC)  Ed Szoke (GSL)  

Jacob Bruss (Purdue) 
Cass Shivers-Williams 
(OAR/WPO)  Burkely Gallo (16WS)  

Claiborne Wooton (M-W; UND) Jana Houser (Ohio State)  John Boris (NWS APX)  
Nicholas Camp (UND) Jake Mulholland (UND)  Adam Picard (NWS KEY)  
Connor Michael (OSU) Ethan Weisberger (UND)    
Chandra Kondragunta (OAR/WPO) Cole Hood (UND)    
Brian Tentinger (NWS BGM) Levi Newel (UND)    
Mike Natoli (NWS CYS) Mark Jarvis (NWS LMK)    

 Martin Mayeaux (NWS SHV)    
***** EVENING FORECASTING ACTIVITY ***** 

Pierce Larkin (NWS CAE) Tim Brice (NWS EPZ) Brittany Whitlam (WFO REV) Jeremy Buckles (NWS MRX) Valerie Thaler (WFO OTX) 

Julie Arthur (NWS BYZ) Tony Hurt (NWS TBW) Roman Miller (WFO AKQ) Eswar Iyer (NWS AKQ) Ryan Fucheck (WFO MHX) 

 
Zahaira Velez-Serrano (NWS 
EKA) Matt Strauser (WFO CAR)  Matt Flanagan (WFO TOP) 

    Colton Milcarek (WFO PBZ) 

    Logan Poole (WFO JAN) 

SFE Facilitators: Adam Clark (NSSL), Israel Jirak (SPC), Dave Imy (retired SPC), Tim Supinie (SPC), Sean Ernst (CIWRO/SPC), 
Kent Knopfmeier (CIWRO/NSSL), Chris Karstens (SPC), Eric Loken (CIWRO/NSSL), David Harrison (CIWRO/SPC), David Jahn 
(CIWRO/SPC), Jacob Vancil (CIWRO/SPC), Jeff Milne (CIWRO/SPC), Andy Wade (CIWRO/SPC), Joey Picca (CIWRO/SPC), 
Patrick Skinner (CIWRO/NSSL), Patrick Burke (NSSL), and Nathan Dahl (CIWRO/SPC). 
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Appendix B: Organizational structure of the NOAA/Hazardous Weather Testbed 
 

NOAA’s Hazardous Weather Testbed (HWT) is a facility jointly managed by the National Severe 
Storms Laboratory (NSSL), the Storm Prediction Center (SPC), and the NWS Oklahoma City/Norman 
Weather Forecast Office (OUN) within the National Weather Center building on the University of 
Oklahoma South Research Campus.  The HWT is designed to accelerate the transition of promising new 
meteorological insights and technologies into advances in forecasting and warning for hazardous 
mesoscale weather events throughout the United States.  The HWT facilities are situated between the 
operations rooms of the SPC and OUN.  The proximity to operational facilities, and access to data and 
workstations replicating those used operationally within the SPC, creates a unique environment 
supporting collaboration between researchers and operational forecasters on topics of mutual interest. 

The HWT organizational structure is composed of three overlapping programs (Fig. B1).  The 
Experimental Forecast Program (EFP) is focused on predicting hazardous mesoscale weather events on 
time scales ranging from hours to a week in advance, and on spatial domains ranging from several 
counties to the CONUS. The EFP embodies the collaborative experiments and activities previously 
undertaken by the annual SPC/NSSL Spring Experiments.  For more information see 
https://hwt.nssl.noaa.gov/efp/.  

The Experimental Warning Program (EWP) is concerned with detecting and predicting mesoscale 
and smaller weather hazards on time scales of minutes to a few hours, and on spatial domains from 
several counties to fractions of counties.  The EWP embodies the collaborative warning-scale 
experiments and technology activities previously undertaken by the OUN and NSSL.  For more 
information about the EWP see https://hwt.nssl.noaa.gov/ewp/.  A key NWS strategic goal is to extend 
warning lead times through the “Warn-on-Forecast” concept (Stensrud et al. 2009), which involves using 

Figure B1:  The umbrella of the NOAA Hazardous Weather Testbed (HWT) encompasses two 
program areas:  The Experimental Forecast Program (EFP), the Experimental Warning 
Program (EWP), and the GOES-R Proving Ground (GOES-R). 
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frequently updated short-range forecasts (≤ 1h lead time) from convection-resolving ensembles.  This 
provides a natural overlap between the EFP and EWP activities. 

The GOES-R Proving Ground (established in 2009) exists to provide demonstration of new and 
innovative products as well as the capabilities available on the next generation GOES-16 satellite.  The 
PG interacts closely with both product developers and NWS forecasters. More information about GOES-
R Proving Ground is found at http://cimss.ssec.wisc.edu/goes_r/proving-ground.html. 

Rapid science and technology infusion for the advancement of operational forecasting requires 
direct, focused interactions between research scientists, numerical model developers, information 
technology and communication specialists, and operational forecasters.  The HWT provides a unique 
setting to facilitate such interactions and allows participants to better understand the scientific, 
technical, and operational challenges associated with the prediction and detection of hazardous 
weather events.  The HWT allows participating organizations to: 

 
• Refine and optimize emerging operational forecast and warning tools for rapid integration into 

operations  
• Educate forecasters on the scientifically correct use of newly emerging tools and to familiarize 

them with the latest research related to forecasting and warning operations  
• Educate research scientists on the operational needs and constraints that must be met by any 

new tools (e.g., robustness, timeliness, accuracy, and universality)  
• Motivate other collaborative and individual research projects that are directly relevant to 

forecast and warning improvement 
 

For more information about the HWT, see https://hwt.nssl.noaa.gov/.  Detailed historical 
background about the EFP Spring Experiments, including scientific and operational motivation for the 
intensive examination of high resolution NWP model applications for convective weather forecasting, 
and the unique collaborative interactions that occur within the HWT between the research and 
operational communities, are found in Kain et al. (2003), Weiss et al. (2010 – see 
http://www.spc.noaa.gov/publications/weiss/hwt-2010.pdf), Clark et al. (2012; 2018; 2020; 2021; 
2022; 2023), and Gallo et al. (2017). 
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Appendix C: Mandatory 2024 CLUE Fields 

1. Mean Sea Level Pressure 26. CIN (most unstable) 
2. Composite reflectivity 27. CAPE (mixed layer) 
3. Reflectivity at -10 C 28. CIN (mixed layer) 
4. Maximum surface wind gust 29. 0-3 km AGL storm relative helicity 
5. hrly-max upward motion 100-1000 hPa 30. 0-1 km AGL storm relative helicity 
6. hrly-max downward motion 100-1000 hPa 31. 2-5 km AGL UH (instantaneous) 
7. Reflectivity at 1-km AGL 32. Echo Top Height 
8. Hrly-max reflectivity at 1-km 33. 300 hPa Height 
9. Hrly-max reflectivity at -10 C 34. 300 hPa u-wind 
10. Hrly-max 2-5 km AGL UH 35. 300 hPa v-wind 
11. Hrly-min 2-5 km AGL UH 36. 300 hPa temperature 
12. Hrly-max 0-3 km AGL UH 37. 500 hPa Height 
13. Hrly-min 0-3 km AGL UH 38. 500 hPa u-wind 
14. Surface Pressure 39. 500 hPa v-wind 
15. Surface Height 40. 500 hPa temperature 
16. 2-m temperature 41. 700 hPa Height 
17. 2-m dewpoint 42. 700 hPa u-wind 
18. 2-m relative humidity 43. 700 hPa v-wind 
19. 10-m u-wind 44. 700 hPa temperature 
20. 10-m v-wind 45. 850 hPa Height 
21. Hrly-max 10-m Wind Speed 46. 850 hPa u-wind 
22. Surface total precipitation (run total) 47. 850 hPa v-wind 
23. CAPE (surface parcel) 48. 850 hPa temperature 
24. CIN (surface parcel) 49. 850 hPa specific humidity 
25. CAPE (most unstable)  
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