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ABSTRACT

A fundamental assumption for the application of range-oversampling techniques is that the correlation of

oversampled signals in range is accurately known. In this paper, a theoretical framework is derived to quantify

the effects of inaccurate range correlation measurements on the performance of such techniques, which in-

clude digital matched filtering and those based on decorrelation (whitening) transformations. It is demon-

strated that significant reflectivity biases and increased variance of estimates can occur if the range correlation

is not accurately measured. Simulations and real data are used to validate the theoretical results and to

illustrate the detrimental effects of mismeasurements. Results from this work underline the need for reliable

calibration in the context of range-oversampling processing, and they can be used to establish appropriate

accuracy requirements for the measurement of the range correlation on modern weather radars.

1. Introduction

Range-oversampling processing can be used on pulsed

Doppler weather radars to increase the signal-to-noise

ratio (SNR) through digital matched filtering (Chiuppesi

et al. 1980) or to reduce the variance of estimates by

decorrelating oversampled data with a matrix transfor-

mation followed by incoherent range averaging (Torres

and Zrni�c 2003a,b). Early studies showed the feasibility

of this type of processing using weather data collected

with experimental setups and offline signal processing

(Ivi�c et al. 2003; Torres and Ivi�c 2005). More recently,

a real-time implementation was employed on the Na-

tional Weather Radar Testbed phased-array radar

(NWRT PAR) that resulted in faster scan times (by a

factor of 2) with no significant loss in data quality (Curtis

and Torres 2011). As range-oversampling processing is

feasible on modern digital receivers and signal pro-

cessing architectures, it becomes increasingly important

to understand what calibration measurements are nec-

essary and how accurate they need to be for optimal

performance. This is the focus of this paper.

The decorrelation transformations used for range-

oversampling processing (e.g., digital matched filtering

and whitening) depend solely on the normalized range

correlation matrix CV (Curtis and Torres 2011). This

matrix captures the necessary range correlation infor-

mation for computing appropriate matrix transfor-

mations; hence, it is important to measure it accurately.

One of the advantages of range-oversampling processing

is that the range correlation of oversampled signals can be

measured a priori; that is, assuming uniform reflectivity in

the radar resolution volume, the range correlation of

oversampled signals depends only on radar parameters,

namely, themodified pulse (Torres andZrni�c 2003a). The

modified pulse is defined as the envelope of the trans-

mitter pulse convolved with the baseband-equivalent

receiver impulse response (i.e., the transmitter pulse

shape after passing through the receiver filters); thus, it

captures both components of the range correlation

(Torres and Curtis 2012). In this paper, we show that

accurately measuring the range correlation matrix (di-

rectly from the data or derived from themodified pulse) is

critical for optimal performance of range-oversampling

processing.

In principle, the correlation of samples in range can be

measured directly from the actual radar data (Ivi�c et al.

2003), but this makes a systematic mismeasurement

analysis less straightforward. Alternatively, the range

correlation can be derived from the measured modified

pulse. This method is adopted herein for convenience

but without the loss of generality. The modified pulse
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can be measured in a couple of ways. One way is to

simply capture the return from a strong point target (or

from multiple ones to check for consistency). If the

target is extremely narrow in range extent (e.g., a metal

transmission tower), then the measured response will

consist of the original transmitted pulse that is reflected

off the target and is modified after passing through the

receiver filters. This satisfies the definition of the modi-

fied pulse and is one way to accurately measure it. The

second way to measure the modified pulse is to inject

a delayed version of the transmitted pulse directly into

the front end of the radar receiver. Note that an addi-

tional receiver channel is required if this measurement is

to be carried out when the actual pulse is transmitted.

However, this method eliminates the need to find

a narrow point target, and the signal level can be set

appropriately to accurately measure the modified

pulse. Although the path through the antenna is not

included, it should not have a significant effect on the

measurement. An additional consideration when

measuring the modified pulse is the receiver sampling

rate. A more accurate measurement of the range cor-

relation can be obtained if the pulse is sampled at a rate

higher than that used for oversampling processing

(normally a multiple of the range-oversampling rate).

However, as will be demonstrated later, sampling at the

oversampling rate should be sufficient to derive the

range correlation matrix needed for range-oversampling

processing.

Having established the intimate connection between

range-oversampling processing and the range corre-

lation matrix of oversampled signals, and having out-

lined procedures to measure the latter, it is essential

to examine how inaccurate measurements of the

range correlation can affect the performance of range-

oversampling processing. As will be shown, one of the

major effects of a mismeasured range correlation is

reflectivity bias. This bias can be on the order of a few

decibels (dB), which can lead, for example, to signifi-

cantly inaccurate quantitative precipitation measure-

ments. Another effect is an overall degradation in

performance; that is, the expected increase in SNR or

reduction in variance of estimates is not achieved if the

range correlation is measured inaccurately. This affects

all of the meteorological variables and can, for exam-

ple, unexpectedly result in higher variance of estimates

for whitened data compared to a digital matched filter,

even at high signal-to-noise ratios.

This paper is structured as follows. Section 2 in-

troduces a theoretical framework for studying the ef-

fects of mismeasurement of the range correlation

matrix. In section 3, the theory is validated using simu-

lations that showhowdifferent types ofmismeasurements

affect the reflectivity bias and degrade the performance

of range-oversampling processing. Section 4 shows a

case from the NWRT PAR that clearly illustrates the

reflectivity biases observed when range-oversampling

processing relies on an inaccurate measurement of the

range correlation. Finally, the results are summarized

along with suggestions for applying this work so that the

benefits of range-oversampling techniques can be fully

realized.

2. Theoretical analysis

In a nutshell, range-oversampling processing entails

acquiring time series data at rates L times higher than

with conventional sampling and performing inco-

herent averaging of transformed datasets. The goal of

this processing may be to increase the SNR with

a digital matched filter (Chiuppesi et al. 1980) or to

reduce the variance of meteorological variable esti-

mates (Torres and Zrni�c 2003a). Mathematically, the

transformation of range-oversampled signals can be

expressed as

Xm 5WVm , (1)

where Vm 5 ½V(0, m) V(1, m) ⋯ V(L2 1, m) �T is

the column vector of L oversampled signals for a given

sample time mTs (m 5 0, 1, . . . , M21, where M is the

number of pulses per dwell; Ts is the pulse repetition

time). Oversampled time series data are typically spaced

by Tr 5 t/L in range time (t is the transmitter pulse

width) and by Ts in sample time. Here, W is an L-by-L

transformation matrix, and Xm is the vector of L trans-

formed samples with the same structure as Vm. In gen-

eral, W can be any L-by-L complex-valued matrix

normalized to satisfy the ‘‘power-preserving condition’’

given by Torres et al. (2004) as

tr(W*CVW
T)5L , (2)

where ‘‘tr’’ is the matrix trace operation, and super-

scripts T and * denote matrix transposition and com-

plex conjugation, respectively. In the previous equation,

CV is the normalized range correlation matrix of raw

(i.e., nontransformed) oversampled signals defined as

CV 5 S21E[Vm
*VT

m], where S is the true signal power

and E is the statistical expectation operator. A special

case of W is the whitening transformation given by

W5H21, where H is the matrix square root of CV , that

is, CV 5H*HT(Torres and Zrni�c 2003a). Other com-

monly used transformations, such as digital matched

filtering and pseudowhitening, are described by Curtis

and Torres (2011).
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The normalized range correlation matrix of raw sam-

ples can be computed in terms of the modified pulse

(Torres and Curtis 2012) as

CV 5 kpk22P*PT , (3)

where k.k is the vector-norm operator, p5
[p(0)p(1)⋯ p(Np 2 1)] is the modified-pulse vector of

lengthNp sampled at the same range-oversampling rate of

T21
r , and P is the L-by-(Np 1 L 2 1) modified-pulse con-

volution matrix (referred to as the pulse matrix) given by

P5

2
6664

p(Np 2 1) ⋯ p(0) 0 ⋯ 0

0 p(Np 2 1) ⋯ p(0) 0

⋱ ⋱
0 ⋯ 0 p(Np 2 1) ⋯ p(0)

3
7775 . (4)

It is not difficult to verify that, as required, (3) is a nor-

malized correlation matrix with ones along its main di-

agonal. Regardless of the nature of W (e.g., digital

matched filter, pseudowhitening, or whitening), the

power-preserving condition in (2) means that range-

oversampling processing must rely on accurate knowl-

edge ofCV , herein derived from themodified pulse p. As

shown next, any mismatches between the true and mea-

sured modified pulses will translate into improper nor-

malizations ofW, which may lead to unanticipated biases

and/or larger-than-expected variance of estimates.

Next, we compute the biases and variances of spec-

tral moment estimates as a function of the range cor-

relation matrix of transformed oversampled signals.

Transformed range-oversampled dataX can be used to

estimate the spectral moments of weather signals via

estimates of the sample-time autocorrelation function

at a few small lags (Doviak and Zrni�c 1993); that is,

from sample-time lag-k autocorrelation estimates of

the form

R̂
(S)

X (k)5
1

L(M2 jkj) �
L21

l50
�

M2jkj21

m50

X*(l,m)X(l,m1 k);

for k5 0, 1 (5)

the signal power, mean Doppler velocity, and spectrum

width1 can be derived as

Ŝ5 R̂
(S)

X (0) , (6)

ŷ52
ya
p
arg[R̂

(S)

X (1)], and (7)

ŝy 5
ya

ffiffiffi
2

p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������
ln

2
64 R̂

(S)

X (0)

jR̂(S)

X (1)j

3
75

�������

vuuuut , (8)

respectively, where the ‘‘hats’’ designate estimates, ya is

the Nyquist velocity, and ‘‘arg’’ denotes the argument of

a complex number. In the previous equations, subscript

X is used to indicate that autocorrelation estimates are

derived from transformed data, and superscript S is used

to denote sample-time autocorrelation (as opposed to

range-time autocorrelation, which will be denoted with

a superscript R). Because the effects of receiver noise

are not the focus of this study, a high SNR is assumed for

simplicity. Whereas the bias of (6) can be derived di-

rectly, the biases of (7) and (8) can only be approxi-

mated. Here, we follow the approach by Benham et al.

(1972) and use first-order perturbations of the nonlinear

functions of R̂
(S)

X at different lags, which are valid at high

SNR and relatively large M (Zrni�c 1977). Thus, it is

possible to find the biases of spectral moment estimators

as functions of the expected values of autocorrelation

estimates. Using the results from Benham et al. (1972)

and Zrni�c (1977),

Bias(Ŝ)5E[R̂
(S)

X (0)]2R
(S)
X (0) , (9)

Bias(ŷ)’2
ya
p

Im

8><
>:
E[R̂

(S)

X (1)]

R
(S)
X (1)

9>=
>;
, and (10)

Bias(ŝy)’
1

2psyn

jR(S)
X (1)j

R
(S)
X (0)

0
B@E[R̂

(S)

X (0)]

R
(S)
X (0)

2Re

8><
>:
E[R̂

(S)

X (1)]

R
(S)
X (1)

9>=
>;

1
CA , (11)

1 Herein, we focus on the classical lag 0–1 spectrum-width esti-

mator; however, the results also apply to other spectrum-width

estimators that are based on the ratio of the autocorrelation at two

different lags.
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where syn is the spectrum width normalized by the

Nyquist cointerval (2ya); the quantities with no hat

represent true values; and ‘‘Re’’ and ‘‘Im’’ stand for real

and imaginary parts of a complex number, respectively.

The expected values of sample-time autocorrelation

estimates in the right-hand side of (9)–(11) can be de-

termined from (5) as

E[R̂
(S)

X (k)]

5
1

L(M2 jkj) �
L21

l50
�

M2jkj21

m50

E[X*(l,m)X(l,m1 k)] ,

(12)

where the expected value inside the double summation

can be recognized as the two-dimensional autocorrela-

tion function at range-time lag zero and sample-time

lag k, RX(0, k). This two-dimensional function is sepa-

rable as the product of one-dimensional range- and

sample-time autocorrelations, R
(R)
X (0)R

(S)
X (k). In this

separation, the sample-time term includes the true signal

power [i.e., R
(S)
X (0)5 S] such that R

(R)
X (0)5 1. To write

(12) in terms of the range correlation matrix of trans-

formed signals RX, note that the elements along the

main diagonal of this matrix are all equal toR
(R)
X (0), such

that tr(RX)5LR
(R)
X (0). Thus, (12) can be written as

E[R̂
(S)

X (k)]5R
(R)
X (0)R

(S)
X (k)5

1

L
tr(RX)R

(S)
X (k) , (13)

where the range correlation matrix of transformed sam-

ples is defined as RX 5 S21E[Xm
* XT

m]. Using (1), RX can

be expressed in terms of the normalized range correla-

tion matrix of raw samples as RX 5W*CVW
T. Thus,

unbiased sample-time autocorrelation estimates at ev-

ery lag are obtained if L21tr(W*CVW
T)5 1, which can

be recognized as the power-preserving condition in (2).

In other words, proper normalization of W leads to

proper normalization ofRX and to the identityRX5CX,

where CX is defined as the normalized range correlation

matrix of transformed samples with ones along its main

diagonal. However, the power-preserving condition can

be met only if CV is accurately measured.

Next, we look at the effects of inaccurate measure-

ments of the range correlation matrix. The reader should

note that range correlation mismeasurements could arise

from many different sources, such as contaminated data,

improper methodology, or changes in system hardware;

however, the analysis that follows is applicable regardless

of the source. In general, if the normalized range corre-

lation matrix of raw samples is mismeasured (denoted

with a tilde as ~CV , where ~CV 6¼ CV), then the power-

preserving condition may not be met. Consider a trans-

formation ~W derived from the mismeasured range

correlationmatrix ~CV , such that tr( ~W*~CV
~WT)5L. Note

that the normalization of ~W is carried out by incorrectly

assuming that the measured range correlation matrix

is accurate. However, the true range correlation of

transformed oversampled signals depends on CV;

thus, the correct power-preserving condition would

be tr( ~W*CV
~WT)5L (note that there is no tilde on top

of CV). As a consequence of this mismatch, ~W is not

guaranteed to be power preserving. In other words, the

expected range-time correlation matrix of transformed

samples based on measurements, ~W*~CV
~WT, does not

match the truth, ~RX 5 ~W*CV
~WT. Further, ~RX is not

properly normalized since ~W was not derived to ensure

that tr( ~W*CV
~WT)5L. Although unfeasible in practice

(only ~CV is known), ~CX could be obtained through a re-

normalization of ~RX as

~CX 5
tr( ~W*~CV

~WT)

tr( ~W*CV
~WT)

~RX , (14)

where it is easy to show that tr(~CX)5L.

In the following, spectral moment estimates from W

are denoted with a hat, and those derived from ~W with

a ‘‘tilde.’’ For this analysis it is assumed that ~CV 6¼ CV

and, as discussed above, ~RX becomes improperly nor-

malized. Using the result from (13) in (9)–(11), the biases

of spectral moment estimates obtained from ~W are

Bias( ~S)5S[L21tr(~RX)2 1] , (15)

Bias(~y)’2
ya
p
Im[L21tr(~RX)], and (16)

Bias(~sy)’
1

2psyn

jR(S)
X (1)j

R
(S)
X (0)

fL21tr(~RX)

2Re[L21tr(~RX)]g . (17)

Note that tr(~RX)5L ~R
(R)

X (0) is a real number regardless

of how ~W is derived; thus, (16) and (17) reduce to zero.

Consequently, the bias of signal power estimates de-

pends on the range correlation matrix of transformed

samples, whereas Doppler velocity and spectrum width

estimates remain unbiased for any degree of mismeasure-

ment. Not surprisingly, unbiased signal power estimates

are obtained if tr(~RX)5L, which is true if ~CV 5CV—that

is, if there is no mismeasurement of the range correlation.

The variance of spectral moment estimates derived

from ~W can also be computed directly for signal power

and using perturbation analyses for velocity and spec-

trum width, as done by Zrni�c (1977). Expressions for
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these in the context of range oversampling are given by

Curtis and Torres (2011); at high SNR, they are

Var(~S)5
[E(~S)]2

ML2

1

2synp
1/2

tr(~C2
X)

5
[SL21tr(~RX)]

2

ML22synp
1/2

tr(~C2
X) , (18)

Var(~y)5
v2a

p2(M2 1)L2

e(2psyn
)2 2 1

4synp
1/2

tr(~C2
X), and (19)

Var(~sy)5
y2ae

2(2ps
yn
)2

4p4s2
yn(M2 1)L2

3
e(2psyn

)2 2 4e(psyn
)2 1 3

4synp
1/2

tr(~C2
X): (20)

Once again, the reader should note that whereas ~CX is

properly normalized (by definition), in general, ~RX is

not.

The expressions in (15)–(20) show that a range cor-

relation mismeasurement may lead to unexpected vari-

ances of estimates since, in general, tr(~C2
X) 6¼ trðC2

X)

but, more importantly, to a biased signal power esti-

mator, which translates into biased radar reflectivities.

Using first-order perturbation analysis, the equation

that relates reflectivity and signal power can be used to

compute an approximation for the bias of reflectivity

estimates in decibels (dB); that is, from

~Z5 10 log10(g
~S) [dBZ] , (21)

where g contains the reflectivity calibration constant

and all range-dependent terms (Doviak andZrni�c 1993),

it can be shown that

Bias( ~Z)’ 10 log10

2
6411Bias( ~S)

S

3
75

5 10 log10[L
21tr(~RX)] [dB], (22)

where we used the result in (15).

The change in estimator variance arising from a mis-

measured range correlation can be quantified by taking

the ratio of variances of estimates derived from ~W to

those derived from W. Equations (18)–(20) are used for

the former, and the same equations can be applied to

the latter by substituting all ‘‘tilded’’ matrices with their

‘‘nontilded’’ counterparts. The substitution is immediate

and further simplifications can be done by recognizing

that tr(RX)5L. The variance ratios for the spectral mo-

ments are

Var(~S)

Var(Ŝ)
5

tr2(~RX)tr(
~C2
X)

tr2(RX)tr(C
2
X)

5
tr2( ~W*~CV

~WT)

L2

3
tr[( ~W*CV

~WT)2]

tr[(W*CVW
T)2]

, and (23)

Var(~y)

Var(ŷ)
5
Var(~sy)

Var(ŝy)
5

tr(~C2
X)

tr(C2
X)

5
tr2( ~W*~CV

~WT)

tr2( ~W*CV
~WT)

3
tr[( ~W*CV

~WT)2]

tr[(W*CVW
T)2]

; (24)

these depend on the true and measured range correla-

tion matrices, CV and ~CV , and the ideal and actual

transformation matrices, W and ~W.

The polarimetric variables (i.e., differential reflectiv-

ity ZDR, differential phase FDP, and magnitude of the

copolar correlation coefficient rHV) can be analyzed

analogously. Perturbation formulas for the biases and

variances of these estimators (e.g., Melnikov and Zrni�c

2004) can be used to show that all polarimetric variables

remain unbiased for any degree of mismatch. Without

going into the mathematics, this can be intuitively ex-

plained by noticing that ZDR and rHV, like sy, are based

on ratios of auto- and cross-correlation estimates, and

FDP, similarly to y, is based on the argument of a cor-

relation estimate. Thus, any scaling errors arising from

range correlation mismeasurements will cancel out in

the ratios or become immaterial after taking the argu-

ment. Because of these similarities, it can also be shown

that the variance ratios for the polarimetric variables are

given by (24). In the next section, Eqs. (22)–(24) are

validated with simulations and are used to quantify the

effects of relying on an inaccurately measured range

correlation.

3. Simulations

The theoretical results derived in the previous section

are validated with simulations in this section. Range-

oversampled weatherlike signals were simulated using

the procedure described by Torres and Zrni�c (2003a)

and the modified pulse of the NWRT PAR (Zrni�c et al.

2007) located in Norman, Oklahoma, where the range-

oversampling factor was L5 4 (as in the NWRT PAR).

Simulated range-oversampled signals were processed

using the approach described in the previous section to
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obtain spectral moment estimates for 10 000 realizations

of simulated signals with a high SNR of 30 dB and

a spectrum width of 2 m s21, which is typical of many

weather phenomena (Fang et al. 2004). Without loss of

generality, the Doppler velocity was set to zero because

it has no effect on the biases and variances under anal-

ysis [cf. (15)–(20)]. A long pulse repetition time (PRT)

was used for signal power (reflectivity) estimates, where

the number of samples per dwell was M 5 15 and the

Nyquist velocity was ya 5 7.5 m s21. A short PRT was

used for mean Doppler velocity and spectrum width

estimates, where M 5 40 and ya 5 23.7 m s21. Range-

oversampling processing was carried out using (i) a whit-

ening transformation (whitening-transformation-based

estimates are denoted by WTB), (ii) pseudowhitening

transformations (PTBs)with sharpening parametera5 0.6

and 0.8 (Torres et al. 2004), and (iii) a digital-matched

filter transformation (MFB). As explained next, trans-

formations were derived using mismeasured modified

pulses with varying degrees of mismatch in either mag-

nitude or phase.

A model for the modified-pulse shape was chosen so

that amplitude and phase mismatches could be system-

atically varied. The amplitude of the modified pulse was

assumed to be symmetric and was obtained by resam-

pling the piecewise-cubic Hermite-polynomial interpo-

lation with control points on the normalized time axis

defined at (0,1), (w/2 2 r0,0.9), (w/2,0.5), (w/2 1 r1,0.1),

and (1,0). This type of interpolation is particularly suit-

able for our purpose because of its shape-preserving

properties; that is, it results in no overshoots and less

oscillation if the data are not smooth (Fritsch andCarlson

1980). Figure 1 shows a depiction of the amplitudemodel,

where w can be recognized as the 3-dB normalized pulse

width and r0 1 r1 as its normalized fall time. The phase

of the modified pulse was derived from the phase of the

NWRTPARmodified pulse (fNWRT) by adding constant

and linearly increasing phase terms; that is, arg[p(t)]5
fNWRT 1 f0 1 f1t.

Figure 2 shows the NWRT PAR modified pulse (dot-

ted line) measured using the return from a tower and

its best match using our model (solid black line). Also

shown in this figure are the amplitudes and phases of the

maximally mismatched pulses (solid gray lines) used in

the simulation analyses. The model parameters that best

match the NWRT PAR pulse are w 5 0.79, r0 5 0.19,

r15 0.2,f05 0, andf15 0. These are the nominalmodel

parameters used for the simulations; that is, mismatches

are obtained by deviating from the nominal parameters,

where deviations are denoted by appending D to the

FIG. 1. Magnitude of the modified pulse p, as a function of nor-

malized time t/LTr, whereL is the oversampling factor andTr is the

range sampling period. The amplitude model is based on five

control points (represented as ‘‘big dots’’); two are fixed and three

are variable and depend on w, the 3-dB normalized pulse width, r0
and r1, where r0 1 r1 is the normalized fall time.

FIG. 2. (top) Magnitude and (bottom) phase of the NWRT PAR

modified pulse (dotted line) as a function of normalized range time.

Also shown are its best match using the amplitude model with

parameters w 5 0.79, r0 5 0.19, r1 5 0.2, f0 5 0, and f1 5 0 (solid

black line), and the amplitude and phase of the maximally mis-

matched pulses used in the simulation analysis (solid gray lines).

The normalized widths of the maximally mismatched pulses are 0.5

and 1.1, respectively; and the phase slopes are 6908 per sample.
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parameter being changed (e.g., Dw for w). For the max-

imally mismatched pulses, the normalized widths are

w 5 0.5 and 1.1 (i.e., a Dw of about 60.3), respectively,

and the slopes of the linear phase shifts are f1 5 6908
per sample (i.e., for Np 5 8, this results in a maximum

shift of 67208 that occurs on the last sample).

Figure 3 shows theoretical (thick lines) and simulation

(thin lines) results for MFB, PTB, and WTB spectral

moment estimates as a function of the normalized width

mismatch (Dw). The left plots show the biases of reflec-

tivity [cf. (22)] (top) and mean Doppler velocity [cf. (16)]

(bottom). The right plots show the ratio of standard de-

viations obtained from a mismeasured modified pulse to

those obtained from the true modified pulse for signal

power and Doppler velocity estimates [cf. (23) and (24)].

A series of 50 modified pulses with normalized widths

ranging from 0.5 to 1.1 are used in this analysis. The

phases of the modified pulses are set to zero so that the

effects of an amplitude mismatch can be independently

quantified. Note that Dw 5 0 indicates no mismeasure-

ment; that is, the measured pulse is exactly the true pulse

and, as expected, this corresponds to zero reflectivity bias

and unit standard deviation ratios. In general, as the de-

gree of mismatch increases, reflectivity biases increase (in

absolute value) and range-oversampling processing be-

comes less effective; that is, the standard deviations of

WTB and PTB estimates increase with respect to the ex-

pected levels when there are no mismeasurements. The

reflectivity bias for MFB estimates increases when the

modified-pulse width is measured to be narrower than it

FIG. 3. Theoretical (thick lines) and simulation (thin lines) results for WTB (light gray lines), PTB (medium gray

lines), andMFB (black lines) estimates as a function of the normalizedwidthmismatch (Dw). (left) Bias of reflectivity
and Doppler velocity estimates using 50 modified pulses with varying degree of mismeasurement. (right) Ratio of

standard deviations for signal power and Doppler velocity estimates using the same 50 mismeasured pulses with

respect to the true modified pulse.
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actually is. WTB estimates exhibit the opposite behavior,

and PTB estimates fall in between, depending on the

degree of pseudowhitening (i.e., 0, a, 1, ranging from

MFB-like to WTB-like performance). For the range of

width mismatches used in this simulation, the maximum

absolute reflectivity bias is about 1.5 dB, which occurs for

WTB estimates and a measured modified pulse narrower

than the true one. The ratios of standard deviations for

signal power estimates follow the same trends as the re-

flectivity biases. It is important to observe that although

standard deviation ratios less than one would imply that

transformations derived from a mismeasured range cor-

relation matrix are more effective at reducing the vari-

ance of estimates, this is not the case for signal power

estimates (top-right panel) since these are severely biased

(top-left panel). Conversely, the ratios of standard

deviations for velocity (and spectrum width) estimates

(bottom-right panel) are more meaningful since these

estimates are unbiased (bottom-left panel) irrespective

of any mismeasurements. It is also worth noting that

MFB velocity estimates are almost unaffected by the

modified-pulse width mismatch, PTB estimates are min-

imally affected, and WTB estimates are affected with

very modest departures from the ideal behavior (a max-

imum of about 10% degradation in the standard devia-

tion of velocity estimates).

Figure 4 is the same as Fig. 3, but the results are

plotted as a function of the phase–slopemismatch (Df1).

A series of 50 modified pulses with linear phase shifts

ranging from 2908 to 908 per sample are used in this

analysis. In this case, the amplitudes of the modified

pulses are always set to the amplitude of the NWRT

PAR modified pulse (Fig. 2), and the phases are per-

turbed using those of the NWRT PARmodified pulse as

a reference; that is, Df1 5 0 indicates no mismeasure-

ment (in amplitude or phase), which again corresponds

FIG. 4. As in Fig. 3, but as a function of the phase–slope mismatch (Df1).
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to zero bias and unit standard deviation ratios. As be-

fore, reflectivity estimates become more biased and

range-oversampling processing becomes less effective as

the degree ofmismatch increases. However, whereas the

reflectivity bias for MFB estimates becomes more neg-

ative (referred to as the ‘‘cold’’ radar effect), those of

WTB estimates become more positive (‘‘hot’’ radar ef-

fect). For the range of phase mismatches in this simu-

lation, Doppler velocity estimates are unbiased and the

maximum reflectivity bias is about 65 dB, and positive

for WTB estimates and negative for MFB estimates. As

expected, the ratio of standard deviations for signal

power estimates follows the same trends as the reflec-

tivity bias and, again, standard deviation ratios less than

one are not an indication of higher effectiveness at re-

ducing the variance of estimates because of the negative

bias of signal power estimates. The ratios of standard

deviations for velocity (and spectrum width) estimates

exhibit a different behavior. It can be observed that

MFB velocity estimates are, like before, almost unaf-

fected by modified-pulse width mismatches. However,

WTB estimates are maximally affected with up to 60%

degradation from the ideal behavior, and, not surpris-

ingly, the effects on PTB velocity estimates depend on

the degree of pseudowhitening.

Similar analyses were conducted for the polarimetric

variables, but they are not shown here because the bias

and standard deviation ratio plots look nearly identical

to those corresponding to mean Doppler velocity. We

also conducted simulations varying the other modified-

pulsemodel parameters. Fall-timemismatches (nonzero

Dr0 andDr1) lead to performance degradations similar to

those observed with pulse width mismatches. However,

phasemeasurement errors in the form of constant biases

(nonzero Df0) do not affect the performance of any of

the range-oversampling techniques. It is important to

note that, in all cases, the agreement between theoreti-

cal and simulation results is remarkable. In the next

section, real data are used to illustrate the impact of

these results.

4. Effects on data

The effects of mismeasurement of the modified pulse

can be shown using collected time series data. For this

comparison, data from 11 February 2009 were acquired

using a long PRT Ts 5 3104 ms (ya 5 7.5 m s21) and

M 5 15 samples per dwell for reflectivity, and a short

PRTTs5 984 ms (ya5 23.7 m s21) andM5 40 samples

per dwell for mean Doppler velocity and spectrum

width. Long- and short-PRT datasets were processed

with both an accurately measured modified pulse and a

‘‘mismeasured’’modified pulse. To obtain themismeasured

modified pulse, the phase of the NWRT PAR modified

pulse was altered as described in section 3 withDf15 908
per sample. Figures 5 and 6 show plan position in-

dicator (PPI) displays of reflectivity and Doppler ve-

locity fields at ;0159 UTC. In each of these figures, the

three left panels show data processed with the accurately

measured modified pulse, and the three right panels

show data processed with the ‘‘mismeasured’’ modified

pulse. The top two panels show the results utilizing

a digital-matched filter, the middle two panels show the

results for pseudowhitening with a 5 0.6, and the bot-

tom two panels show the results for whitening. This al-

lows us to see the differing effects of mismeasurement

on the three types of processing.

The digital-matched filtered data with the accurately

measured modified pulse is used as the baseline for

comparisons (top-left panel). Since the pseudowhiten-

ing and whitening transformations should be power

preserving, the reflectivity levels shown in the middle

and bottom right panels of Fig. 5 should match but

should also look smoother because of the variance re-

duction obtained from these transformations. We do see

that the data become progressively smoother when mov-

ing from digital-matched filtering to pseudowhitening to

whitening, and the reflectivity levels also seem to match

reasonably well. To quantify the effects of bothmodified

pulses and all processing transformations, reflectivity

differences between the datasets were utilized. The da-

tasets were compared to the baseline digital-matched

filtered dataset with an accurately measured modified

pulse, and an SNR threshold of 20 dB was used to en-

sure that the comparisons were made using strong sig-

nals. Because of some large outliers in the reflectivity

differences, the median was used to measure the central

tendency. In the whitening case with an accurately mea-

sured pulse (bottom-left panel), the median difference in

reflectivity values is 0.05 dB, which shows that the re-

flectivity levels are basically the same. For pseudowhit-

ening, the median reflectivity difference is 0 dB.

For the ‘‘mismeasured’’ modified pulse, the differences

in reflectivity are striking. The digital-matched filtered

data (top-right panel) looks significantly ‘‘colder’’ than

those from the accurately measured case. The median

difference in reflectivity is25.36 dB, which is close to the

theoretically predicted value of25.20 dB (see Fig. 4). As

expected, the whitened data (bottom-right panel) look

‘‘hotter’’ than the accurately measured case. The median

reflectivity difference is 4.43 dB, which also matches well

compared to the theoretically predicted bias of 4.54 dB.

The pseudowhitened data (middle-right panel) exhibit

a smaller bias of 0.24 dB, nearly matching the theoretical

value of 0.27 dB. A secondary effect of these biases can

be seen in the different amounts of censoring between the
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FIG. 5. PPI displays (30 km3 30 km) of reflectivity fields using (left) an accurately measured modified

pulse and (right) a mismeasured modified pulse. (top) Digital-matched filter processing, (middle)

pseudowhitening processing with a 5 0.6, and (bottom) whitening processing were utilized to show the

differing effects of mismeasurement.
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FIG. 6. As in Fig. 5, but for mean Doppler velocity fields.
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left and right panels of Figs. 5 and 6; this censoring is

based on the MFB signal power for all transformations,

and thus all the ‘‘mismeasured’’ fields are affected in the

same way. Although it is more difficult to see the effects

of increased standard deviation, the whitened data using

the mismeasured pulse do look less smooth than the

whitened data using the accurately measured pulse. Even

though this is an extreme example, substantial reflectivity

biases can occur for smaller measurement errors, a fact

that reinforces the case for accurate measurement of the

range correlation. For instance, after changing a trigger

amplifier on the NWRT PAR and before updating the

range correlation measurement to reflect this change, we

observed reflectivity biases of 23.16 and 3.46 dB when

using a digital-matched filter and a whitening trans-

formation, respectively.

As predicted by the theory, the biases in the mean

Doppler velocity data are close to zero. As with the

reflectivity, the velocity data become progressively

smoother whenmoving from digital-matched filtering to

pseudowhitening to whitening. Although fields of spec-

trum width are not included, the results are similar to

those in Fig. 6. In a dual-polarimetric radar, we would

also expect to see no biases in differential reflectivity,

differential phase, and magnitude of the copolar corre-

lation coefficient.

5. Conclusions

Range-oversampling techniques rely on accurate

knowledge of the range correlation to derive time series

data transformations that can improve the signal-to-

noise ratio (e.g., digital matched filter) or reduce the

variance of meteorological data estimates (e.g., whit-

ening). The range correlation can be measured directly

from the data or derived from measurements of the

modified pulse. In this paper, we explored the effects of

having a mismeasured range correlation on the perfor-

mance of range-oversampling techniques.

A theoretical framework was developed to quantify

the effects of mismeasurement in terms of the statistical

performance of range-oversampling techniques based

on a digital matched filter, whitening, and pseudowhit-

ening transformations. Whereas reflectivity estimates

can be severely biased depending on the degree of mis-

measurement, all other meteorological variables were

shown to remain unbiased under any mismeasurement

conditions. However, range-correlation mismeasurements

cause the standard deviations of all estimates to increase,

except for reflectivity, which may have lower standard

deviations because of the negative biases. Simulations

based on a parametric model of the modified pulse were

used to validate the theoretical results. Examples of both

amplitude and phasemismatches were studied and shown

to agree with the theoretical predictions. A real-data case

was used to illustrate the performance degradation that

can occur when there is a severe mismeasurement of the

modified pulse; this also agreed well with simulations and

theoretical results.

As range-oversampling techniques becomemorewidely

used, it is important to understand how amismeasurement

of the range correlation can affect their performance. The

framework provided in this paper can be used to translate

radar data quality requirements into concrete specifica-

tions for the accuracy of range correlation measurements

on modern operational weather radars, and thus ensure

that the benefits of range-oversampling techniques are

fully realized.

Acknowledgments. The authors thank Dusan Zrni�c,

Igor Ivi�c, and three anonymous reviewers for providing

comments to improve the manuscript. Funding was

provided byNOAA/Office of Oceanic andAtmospheric

Research under NOAA–University of Oklahoma Co-

operative Agreement NA11OAR4320072, U.S. Depart-

ment of Commerce.

REFERENCES

Benham, F. G., H. L. Groginsky, A. S. Soltes, and G. Works, 1972:

Pulse pair estimation of Doppler spectrum parameters. Air

Force Cambridge Research Laboratories Rep. AFCRL-72-

0222, Raytheon Contract F19628-71-C-0126, 148 pp.

Chiuppesi, F., G. Galati, and P. Lombardi, 1980: Optimisation of

rejection filters. IEE Proc., 127F, 354–360.

Curtis, C. D., and S.M. Torres, 2011: Adaptive range oversampling

to achieve faster scanning on the National Weather Radar

Testbed phased-array radar. J. Atmos. Oceanic Technol., 28,

1581–1597.

Doviak, R., and D. Zrni�c, 1993: Doppler Radar and Weather Ob-

servations. 2nd ed. Academic Press, Inc., 562 pp.

Fang, M., R. Doviak, and V. Melnikov, 2004: Spectrum width

measured byWSR-88D: Error sources and statistics of various

weather phenomena. J. Atmos. Oceanic Technol., 21, 888–904.
Fritsch, F., and R. Carlson, 1980: Monotone piecewise cubic in-

terpolation. SIAM J. Numer. Anal., 17, 238–246.

Ivi�c, I. R., D. S. Zrni�c, and S.M. Torres, 2003:Whitening in range to

improve weather radar spectral moment estimates. Part II:

Experimental evaluation. J. Atmos. Oceanic Technol., 20,

1449–1459.

Melnikov, V., and D. Zrni�c, 2004: Simultaneous transmission

mode for the polarimetric WSR-88D: Statistical biases and

standard deviations of polarimetric variables. NOAA/NSSL

Rep., 84 pp.

Torres, S. M., and D. S. Zrni�c, 2003a: Whitening in range to im-

prove weather radar spectral moment estimates. Part I: For-

mulation and simulation. J. Atmos. Oceanic Technol., 20,

1433–1448.

——, and ——, 2003b: Whitening of signals in range to improve

estimates of polarimetric variables. J. Atmos. Oceanic Technol.,

20, 1776–1789.

272 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 30



——, and I. R. Ivi�c, 2005: Demonstration of range oversampling

techniques on the WSR-88D. Preprints, 32nd Conf. on Radar

Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 4R.5.

[Available online at https://ams.confex.com/ams/32Rad11Meso/

techprogram/paper_96151.htm.]

——, and C. D. Curtis, 2012: The impact of signal processing on the

range-weighting function for weather radars. J. Atmos. Oce-

anic Technol., 29, 796–806.

——,——, and J. R. Cruz, 2004: Pseudowhitening of weather radar

signals to improve spectral moment and polarimetric variable

estimates at low signal-to-noise ratios. IEEE Trans. Geosci.

Remote Sens., 42, 941–949.
Zrni�c, D. S., 1977: Spectral moment estimates from correlated

pulse pairs. IEEE Trans. Aerosp. Electron. Syst., 13, 344–345.

——, and Coauthors, 2007: Agile-beam phased array radar for

weather observations. Bull. Amer. Meteor. Soc., 88, 1753–1766.

FEBRUARY 2013 TORRES AND CURT I S 273


