


VAD analysis with inclusion of the deformation term  
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1. Problem Statement 

	In early eighties Bob Rabin and Dusan Zrnic developed a least square fit routine to produce the divergence and mean velocity from the azimuthal dependence of the Doppler velocities.  The least square fit is used so that the procedure accepts data at arbitrary azimuthal increments.  The most common cause of unequal azimuthal increments is missing data.  The program considers only the zeroth and first harmonic of the data.  The zeroth harmonic (coefficient Ao) is proportional to horizontal divergence (Doviak and Zrnic 2005) per
    

				 ,    					 (1)

where r is range from the radar, θe is elevation angle, and Ao is the zeroth harmonic coefficient (DC) of the complex Fourier expension.  Possible contamination of (1) by the vertical wind at small elevation angles is ignored.
	The first harmonic A1 contains information on wind speed vh and direction D per

	                    .            			(2)

From the VAD analysis one can compute the stretching and sheering deformations of the wind if the data are fitted up to the second harmonic A2. Wind deformation may be significant if a frontal zone is located inside the VAD circle. The deformation pattern can contribute to an increasing temperature gradient (frontogenesis) if the axis of dilatation has a perpendicular component to the temperature gradient. This situation can be associated with important upward air motion and the development or intensification of precipitation (for example: https://www.weather.gov/media/lmk/soo/frontogenesis_lmk2.pdf.)  If the axis has a component    parallel to the temperature gradient, then there can be a contribution to a decreasing gradient of temperature (frontolysis).	
The two deformation terms are


,    (3)
and the equations for computing the least squares fit are in Rabin and Zrnic (1980).
	Besides providing a physically meaningful quantity, inclusion of the deformation term can significantly improve the fit of the two lower terms. This is so because in case of non-uniformly spaced data the harmonic coefficients are coupled and omission of one term increases errors in the other terms. This will be demonstrated herein via examples.  The functional description for computing the second harmonic is in Appendix A, the Matlab script is in Appendix B, and the Fortran code is in Appendix C.

2. Examples on simulated data

Example 1: Let the velocity as function of azimuth ϕ be 

                        v(ϕ) = 3 + 2cos(ϕ-70o) + 4cos(2ϕ -120o) + n(ϕ),            (4) 

where n(ϕ) is random noise.      
	Note that the real coefficients in (4) are related to the complex coefficients via Ao=3,  |A1|=2/2=1 and |A2|=4/2 = 2, the values are in m s-1.  Now if the VAD is made at range r = 30 km and 0o elevation angle this model would produce: Div = 2x10-4 s-1 and vh= 2 m s-1 and deformation terms comparable to divergence.  Also, the second harmonic is larger than either zeroth or first in the example.  This was chosen to illustrate how large the errors could be. Further, the random noise is chosen to have a Gaussian distribution with a mean of 0 and a standard deviation of 0.5 m s-1. 
	Assume that there are many missing values as in Fig. 1a. The curves corresponding to fitted 2nd and 3rd coefficients are in Fig. 1b. In the two coefficients fit it is assumed that the 2nd harmonic does not exist. Therefore the fit is done solely assuming the presence of 0th and 1st harmonics as in the current VAD on the WSR-88D.
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                              (a)                                  			       (b)
Fig. 1.  a) Simulated VAD with missing values.  b) Fitted on data from (a)

	The deficiency of the two coefficients fit is in omitting the contribution of the 2nd harmonic which is significant. Moreover there are many missing data points which causes coupling between the harmonics. If data were spaced at equal increments in azimuth and each radial had a valid data point the two coefficients fit would be sufficient.  
	What matters most is a one by one comparison of the harmonics and this is quantified next.  Thus, the zeroth harmonic Ao = 3.08 m s-1 in case of the 3 coefficients. This replicates very well the input value.  In case of 2 coefficients fit Ao= 3.46 m s-1 which is 15% larger than the correct value. The first harmonics are plotted in Fig. 2.  Notable is a very large difference in phase which causes a very large difference (about 120o) in directions. 

[image: ] 
Fig. 2. The first harmonics in case of 3 (solid) and 2 (dashed) coefficients fit.

	The first harmonic from the 3 coefficients is 2.12 cos(ϕ -74o) and it agrees very well with the input harmonic which is 2 cos(ϕ -70o).  The first harmonic from the 2 coefficients fit is off in phase by about 120o and has magnitude of 2.5 m s-1, i.e., it is larger by 25%. 


Example 2: This example assumes that the divergence and deformation contributions are equal and the mean velocity contribution is 5 times larger.  That is

		v(ϕ) = 1 + 5cos(ϕ-70o) + cos(2ϕ -120o) + n(ϕ).            (5)


 
In Fig. 3a plotted are the results analogous to the ones in Fig. 1b. 
[image: ] [image: ]
Fig. 3.  a) Simulated VAD and fitted up to 2nd harmonic solid curve, and 3rd harmonic, dashed curve. b) First harmonic in the 3 coefficient fit is the full curve. The 2 coefficient fit is the dashed curve. 

In this case (not plotted) the fitted curve is almost indistinguishable from the curve given by (5) without noise.  
	Next let’s look at the same data but fitted only with 0th and 1st harmonics. The zeroth component of the 3 point fit is 0.996. Thus for all practical purposes, the zeroth component is indistinguishable from the input value of 1. The 1st harmonic of the three coefficients fit is 5 (Fig. 3b) and the 1st harmonic of the 2 coefficients fit is 4 which is 20% smaller.    

3. Application to real data
	The VAD analysis with explicit determination of the second harmonic is made on two cases of data from the WSR-88D.  The results are for illustration purposes.  Further statistical analysis, with quantification of errors, as well as comparisons of the case in which only the first two harmonics are solved with the results when the first three harmonics are solved is beyond the allotted time for this effort.  Nonetheless, it should be done in the near future. 
	The VAD analysis is performed on data from the Boston radar (KBOX) and the Dover Air Force Base radar (KDOX). The chosen day is Jan 23, 2016 which was a second day of the Jan 22 – 24 blizzard in the eastern USA. The volume coverage pattern (VCP) was No 21. Data from the lowest seven elevations at 0.5, 1.45, 2.4, 3.35, 4.3, 6, and 9 deg were used in the analysis.  The radius of the VAD circles was changed at any fixed elevation so that a vertical profile of the kinematic parameters with height at that particular elevation could be plotted. For example at 0.5o elevation the radius of 30 km corresponds to the height of about 300 m above ground; that radius and height were the smallest used from the 0.5o elevation. The largest radius for analysis from 0.5o was 140 km corresponding to the height of 2.6 km.    
	The Doppler velocity fields from the lowest and third lowest elevations of the KBOX radar are in Fig.4. Raw and dealised velocities are depicted there.
[image: KBOX_AliasedVelocity-20160123-220244-0050][image: KBOX_Velocity-20160123-220244-0050]
[image: KBOX_AliasedVelocity-20160123-220421-0240][image: KBOX_Velocity-20160123-220421-0240]


Fig. 4. Raw and dealiased velocity images from KBOX at 2202 UTC on 1/23/2016 
[image: U][image: V]Fig. 5. a) The u-component of VAD wind computed along each of the 7 tilts of KBOX volume scan (at 2202 UTC on 1/23/2016) and plotted as a function of height above the radar site.  b) As in a) but for the v-component of VAD wind.

[image: ZDIV]	Profiles of the kinematic variables obtained from the VAD analysis are depicted in Fig. 5.  The u (longitudinal), and v (meridional) components indicate winds from NE at below about 2 km with maximum magnitudes of about 25 m s-1, while from about 2.5 km and up the winds are from SW with speeds smaller than 10 m s-1. 
	The divergence (Fig. 5c) indicates convergence below about 2 km and divergence from about 2 km to 5 km. The magnitudes of the order of 10-5 s-1 can be considered moderate at the synoptic scale.  The profile of deformation (Fig. 5d) suggests that the peak magnitudes are similar (4·10-5 to 6·10-5 s-1) and somewhat larger than the divergence.  The axis of dilatation at heights above 3 km is oriented along 225o in azimuth (Fig. 5e).  
	



Fig. 5. c) As in a) but the divergence is plotted.
[image: ZDFM][image: ZDLT]
Fig. 5. d) As in a) but deformation is plotted. e) The azimuthal angle of dilatation axis is plotted. 

In Fig. 6 presented is the 700 mb analysis made by the NOAA WPC.  The frontogenesis area is indicated with the purple contours. The alignment of the frontogenesis is along the azimuth between about 225o and 245o which, as expected, is perpendicular to the temperature gradient. The orientation of the intensifying front agrees well with the axis of dilatation determined



Fig. 6 Analysis at 700 mb from the NOAA Weather Prediction Center (Jan 23, 21 UTC, 2016). The black countours are 700 mb heights, dashed blue contours are isotherms, and areas of frontogenesis are contoured in purple. The KODX is indicated by the red dot to the SW and the KOBX by the red dot to the NW. See https://www.weather.gov/okx/Blizzard_Jan2016#picture.
from the VAD analysis.  Thus we submit that it might be possible to diagnose evolution of frontogenesis aloft with the WSR-88D.  Such diagnosis can be updated at intervals corresponding to the time needed for volume coverage.  This time is short (in this case 6 min) hence quite suited to capture the evolutions of fronts on the mesoscale. 
	
	The vertical profiles of the kinematic features obtained from the KDOX radar are plotted in Fig. 7.

[image: U][image: V]
	Fig. 7. a) The u-component of VAD wind analysis from the KDOX volume scan (at 2202 UTC on 1/23/2016) and plotted as a function of height above the radar site. b) The v component. 
[image: ZDIV]
                        c) Divergence.
[image: ZDFM][image: ZDLT]
Fig. 7.                d) Deformation. 			  e) Azimuthal angle of dilatation axis.   

[bookmark: _GoBack]	The kinematic profiles obtained from the KDOX data are comparable to the ones obtained from the KBOX data. The axis of dilatation has a stronger westerly component that is in line with the model analysis in Fig. 6 whereby the orientation of the frontogenesis area has a relatively smaller angle with respect to the zonal coordinate at the KDOX location than at the KBOX location.  Further quantitative temporal analysis of this case should be undertaken to determine the prognostic value of the second harmonic. 

4. Conclusions
	The current procedure on the WSR-88D to obtain the wind’s kinematic parameters in the VAD analysis includes the zeroth and first harmonics and ignores the second and higher harmonics.  Herein the VAD analysis is extended to include the second harmonic indicative of the wind’s deformation field.  Because the data for the VAD analysis might not be uniformly spaced (for example in case there are no returns due to absence of scatterers) our procedure consists of least squares fitting the harmonic coefficients.  Besides providing deformation the procedure reduces errors in the velocity and divergence that can be induces by the second harmonic if it is not accounted for.  Demonstration on synthetic data and on real data confirms validity of the procedure.  A functional description of the solution is included as well as the Matlab script and the Fortran code used on real data.  
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Appendix A: Solution for the first three coefficients

	Functional description of the solution for the first three coefficients of the VAD analysis in case of unequally spaced data is presented herein.  Start with the general set of equations given by Rabin and Zrnic (1980, eq 4) which is


,       			(A.1)
where vi is the Doppler (radial) velocity at azimuth ϕi, Ak is a complex Fourier coefficient and integers k, n are the harmonic numbers starting from 0 (corresponding to divergence) and increasing in steps by 1. The index i refers to the azimuth angles which are arbitrarily spaced.  To list the needed set of equations start with n=0, and include k from 0 to the highest harmonic desired; this isolates the first equation.  The second is obtained by setting n=1, etc. The ensuing three equations (divided by the number of data points M along azimuth) follow


                 	 (A.2a)


        	(A.2b)


.	(A.2c)



To compact these equations it is convenient to substitute, etc., andetc.. , so that the set of equations becomes


 

where there is one to one correspondence of symbols Ri and Si to the corresponding summations next to the same coefficient Ai in (A.2). 


	To eliminate A0 from (A.3) make the following operations.  Multiply (A.3a) with 2 and subtract (A.3b) from (A.3a), then multiply (A.3a) with 2 and subtract (A.3c) from (A.3a). The following two equations result from these operations

 

Few more substitution steps are needed to solve for the A coefficients.  Replace (A.4) with

 		

where the correspondence between the ai, bi coefficients next to Ai and the terms next to Ai in (A.4) are one to one.  Next divide (A.5a) with a1 and (A.5b) with a2 to obtain 


           

Then subtract (A.6b) from (A.6a), divide (A.6a) with B and (A.6b) with C and take the difference.  The following two equations emerge from these operations


          

Next eliminate A1 from A(7) by taking a conjugate of (A.7a) and combining with (A.7b) to obtain the following equation for A2.

 

This equation can be compacted to




Take the conjugate of (A.9) and express A2 as . Then substitute  in (A.9) to obtain a linear equation in A2 for which the solution is

                 (A.10)
Substitution of this A2 in either pair (A.7) produces A1 then insertion of A1 and A2 in (A.3a) retrieves A0. 











Appendix B: Matlab script for computation of three harmonics (0th, 1st, 2nd)

%Simulation of VAD, 1st and 2nd harmonics are retrieved via LSF
clear all
th=0:1:359;s0(1:360)=1;am1=5;am2=3;tho1=30;tho2=120;%th=angle deg, am1=amplitude 1st harm; am2=ampl 2nd harmonic;s0=DC zeroth harmonic.
s1=am1*cosd(th-tho1);s2=am2*cosd(2*th-tho2);%time series of the two harmonics, tho1 and th02=offsets in deg.
for k=1:360;N(k)=random('Normal',0,0.5);end% random noise normal dist, mean=0, sig=0.5; not needed
v=s0+s1+s2+N;plot(v)% this is the vel, three harmonics+noise N
V(1:20)=v(1:20);V(21:100)=v(101:180);V(101:200)=v(201:300);%plot(V)% V simulates missing data
th1(1:20)=th(1:20);th1(21:100)=th(101:180);th1(101:200)=th(201:300);th2=2*th1;th3=3*th1;th4=4*th1;
M=200;th1=th1*pi/180;th2=th2*pi/180;th3=th3*pi/180;th4=th4*pi/180;% here transform into radians
 
R1=sum(V)/M;R2=sum(V.*exp(-i*th1))/M;R3=sum(V.*exp(-i*th2))/M;
S1=sum(exp(i*th1))/(2*M);S2=sum(exp(i*th2))/(2*M);
S3=sum(exp(i*th3))/(2*M);S4=sum(exp(i*th4))/(2*M);

a1=2*abs(S1)^2-0.5;b1=2*conj(S1)^2-conj(S2);
c1=2*conj(S1)*S2-S1;d1=2*conj(S1)*conj(S2)-conj(S3);
e1=2*R1*conj(S1)-R2;

a2=2*conj(S2)*S1-conj(S1);b2=2*conj(S2)*conj(S1)-conj(S3); c2=2*abs(S2)^2-0.5;d2=2*conj(S2)^2-conj(S4);e2=2*R1*conj(S2)-R3;

B=b1/a1;C=c1/a1;D=d1/a1;X=e1/a1;       E=b2/a2;F=c2/a2;G=d2/a2;Y=e2/a2;

P1=conj((C-F)/(B-E));Q1=conj((D-G)/(B-E));W1=conj((X-Y)/(B-E));
P2=(C/B-F/E)/(1/B-1/E);Q2=(D/B-G/E)/(1/B-1/E);W2=(X/B-Y/E)/(1/B-1/E);
p=(P1-Q2)/(Q1-P2);q=(W1-W2)/(Q1-P2); 
 
A2=(q-p*conj(q))/(1-abs(p)^2);A1=W1-P1*conj(A2)-Q1*A2;
A0=R1-2*real(A1*S1)-2*real(A2*S2);

am0(1:360)=A0;am1=abs(A1)*cosd(th+atan2(imag(A1),real(A1))*180/pi);
am2=abs(A2)*cosd(2*th+atan2(imag(A2),real(A2))*180/pi);fit=am0+am1+am2;%this is fit to data
 
hold on 
plot(fit,'k');






Appendix C: Fortran programs for computation of the three harmonics 

  
1. test_vad.f	Program to compare wind properties computed from specified harmonics with those using a least squares fit including two harmonics. Calls 2 and 3 below.

2. kinematics.f	 Computes wind properties from specified harmonics.

3. VADLSF2.f  New subroutine for least squares fit including two harmonics.


--------------------------------------------------------------------------------------------------------------------
      Program test_vad
      REAL MISSING,AZM(360),VE(360),CF1,CF2,CF3,CF4,CF5,nx,th,dtr
c      Double precision AZM(360),th,dtr,ve(360)
      INTEGER NAZIMS,NRADIALS,DNPT
      nazims=360
c generate test harmonics
c angles in degrees
c     dtr=1
      dtr=0.01745329
      missing=999.0
c amplitude of first harmonic      
      am1=10.0
c amplitude of second harmonic
      am2=2.0
c phase offset (deg) of first harmonic
      tho1=45
      tho1=tho1*dtr
c phase offset (deg) of second harmonic
      tho2=90
      tho2=tho2*dtr
c dc offset
      s0=0.5
c
      icnt=0
c test with radial 1-300 only
      do i=1,300
c      if(i.gt.100.and.i.lt.150)then
c     go to 50
c       endif
c      if(i.gt.200.and.i.lt.250)then 
c      go to 50
c       endif
   
      th=float(i)
      th=th*dtr
      s1=am1*cos(th-tho1)
      s2=am2*cos(2*th-tho2)
      Nx=rand(0)*dtr
      nx=0
      ve(i)=s0+s1+s2+Nx
      azm(i)=th
      icnt=icnt+1
c      nradials=icnt
      print *,'i,Nx,azm,ve=',i,Nx,azm(i),ve(i)
  50  continue
      enddo
      nradials=icnt
      print *,'nradials=',nradials
      call VADLSF(NAZIMS,NRADIALS,MISSING,AZM,VE,DNPT,
     $                           CF1,CF2,CF3,CF4,CF5)
      call kinematics(CF1,CF2,CF3,CF4,CF5,div_mag,wind_spd,
     x wind_dir,def_mag,def_dir)

c      a1=sqrt(CF2**2+CF3**2)
c      a2=sqrt(CF4**2+CF5**2)
c     print *,'CF1=',cf1
c      print *,'CF2=',cf2
c      print *,'CF3=',cf3
c      print *,'CF4=',cf4
c      print *,'CF5=',cf5
c      print *,'a1=',a1
c      print *,'a2=',a2
c      pi=3.1415
c      atanx=atan(cf2/cf3)/dtr
c      if(cf3.ge.0)then
c      wind_dir=90+atanx
c       else
c      wind_dir=(3*pi/2)/dtr+atanx
c      endif

c      wind_spd=a1
c      div_mag=cf1
c      str=2*cf4
c      shr=2*cf5
c      def_mag=a2
c      atand=atan(cf4/cf5)/dtr
c      if(cf5.ge.0)then
c      def_dir=(pi/4)/dtr+0.5*atand+(pi/2)/dtr
c       else
c      def_dir=(.75*pi)/dtr+0.5*atand+(pi/2)/dtr
c       endif
      print *,'div_mag=',div_mag
      print *,'atanx=',atanx
      print *,'wind_spd,wind_dir=',wind_spd,wind_dir
      print *,'str=',str
      print *,'shr=',shr
      print *,'atand=',atand
      print *,'def_mag=',def_mag
      print *,'def_dir=',def_dir
      return      
end

      SUBROUTINE KINEMATICS(CF1,CF2,CF3,CF4,CF5,div_mag,wind_spd,
     x wind_dir,def_mag,def_dir)
c subroutine to compute kinematic properties from output of least
c squares fit program
c
c inputs:
c coefficents from VADLSF2: CF1,CF2,CF3,CF4,CF5
c these components have not yet been adjusted for beam elevation and earth
c curvature
c
c div_mag  horizontal divergence (10**-5 1/s)
c wind_spd wind speed (m/s)
c wind_dir wind direction (degs)
c def_mag  magnitude of deformation (10**-5 1/s) 
c def_dir  direction of axis of dilitation (degs)
      dtr=0.01745329
      a1=sqrt(CF2**2+CF3**2)
      a2=sqrt(CF4**2+CF5**2)
      print *,'CF1=',cf1
      print *,'CF2=',cf2
      print *,'CF3=',cf3
      print *,'CF4=',cf4
      print *,'CF5=',cf5
      print *,'a1=',a1
      print *,'a2=',a2
      pi=3.1415
      atanx=atan(cf2/cf3)/dtr
      if(cf3.ge.0)then
      wind_dir=90+atanx
       else
      wind_dir=(3*pi/2)/dtr+atanx
      endif
c      dir=(pi/dtr)-atan
      wind_spd=a1
      div_mag=cf1
      str=2*cf4
      shr=2*cf5
      def_mag=a2
      atand=atan(cf4/cf5)/dtr
      if(cf5.ge.0)then
      def_dir=(pi/4)/dtr+0.5*atand+(pi/2)/dtr
       else
      def_dir=(.75*pi)/dtr+0.5*atand+(pi/2)/dtr
       endif
      return
      end

      SUBROUTINE VADLSF(NAZIMS,NRADIALS,MISSING,AZM,VE,DNPT,
     $                           CF1,CF2,CF3,CF4,CF5)
c.********************************************************************
c.                    M O D U L E  P R O L O G U E
c.
c.  MODULE FUNCTION:
c.
c.     This module least squares fits a sine-wave curve to velocity
c.     data points. Data used to perform the fitting is in the form
c.     of Doppler velocity v.s. azimuth angle for a specific slant
c.     range.
c.
c.  MODULES CALLED: NONE.
c.
c.  PARAMETERS:          (*:  G = GLOBAL, C = COMMON, P = PASSED)
c.
c.    *   INPUT    TYPE        DESCRIPTION
c.    -   -----    ----        -----------
c.    P   AZM      R*4         The azimuth angles of the radials between
c.                             AZM_BEG & AZM_END, in degrees. RNG:[0,360].
c.    P   DNPT     I*4         Number of data points used to perform the least
c.                             squares fitting, Dummy variable.
c.                             Rng:[0,NAZIMS].
c.    P   MISSING  R*4         A variable indicating a particular piece of
c.                             data is missing.
c.    P   NAZIMS   I*4         A parameter used to dimension AZM() and VE().
c.    P   NRADIALS I*4         A variable indicating the number of radials of
c.                             data available for least squares fitting. Rng:
c.                             [0,NAZIMS]
c.    P   VE       R*4         Array of Doppler velocities at slant range,
c.                             VAD_RNG and azimuth angles, AZM_BEG, AZM-END,
c.                             within the current elevation scan.
c.
c.    *   OUTPUT  TYPE        DESCRIPTION
c.    -   ------  ----        -----------
c.    P   CF1     R*4         Fourier coefficient (zeroth harmonic.
c.                            Rng:[-100,+100]
c.    P   CF2     R*4         Fourier coefficient (real part of first
c.                            harmonic). Rng:[-100,+100]
c.    P   CF3     R*4         Fourier coefficient (imaginary part of first
c.                            harmonic. Rng:[-100,+100]

c.    P   CF4     R*4         Fourier coefficient (real part of second
c.                            harmonic). Rng:[-100,+100]
c.    P   CF5     R*4         Fourier coefficient (imaginary part of second
c.                            harmonic. Rng:[-100,+100]

c.    P   DNPT    I*4         Number of data points used to perform the least
c.                            squares fitting, Dummy variable. Rng:[0,NAZIMS].
c.
c.    *   ACTUAL ARGUMENTS  TYPE        DESCRIPTION
c.    -   ----------------  ----        -----------
c.
c.  DATABASE/FILE REFERENCE:  None
c.
c.  INTERNAL TABLES/WORK AREA:
c.
c.    NAME      TYPE        DESCRIPTION
c.    ----      ----        -----------
c.    AZM_RAD   R*4         The azimuth angle of a radial in radians.
c.                          Rng:[0,2*PI].
c.    CCJ_Q4    C*8         Intermediate value representing the conjugate of
c.                          Q4 (used to compute the least squares fitted
c.                          harmonic coefficients.
c.    COS_AZ    R*4         The cosine of the azimuth angle for a particular
c.                          radial. Rng:[-1,1]
c.    DTR       R*4         Degrees to radians converstion factor
c.                          (0.017453...).
c.    I         I*4         Index, loop control.
c.    INT_COEFF C*8         Used to compute the fourier coefficient.
c.    Q0        C*8         Intermediate used to compute the least squares
c.                          fitted harmonic coefficients.
c.    Q1        C*8         Intermediate used to compute the least squares
c.                          fitted harmonic coefficients.
c.    Q2        C*8         Intermediate variable used to compute the least
c.                          squares fitted harmonic coefficients.
c.    Q3        C*8         Intermediate variable used to compute the least
c.                          squares fitted harmonic coefficients.
c.    Q4        C*8         Intermediate variable used to compute the least
c.                          squares fitted harmonic coefficients.
c.    Q5        C*8         Intermediate variable used to compute the least
c.                          squares fitted harmonic coefficients.
c.    QQ        C*8         Intermediate variable to reduce some calculations
c.                          and eliminate complex zero divide and floating
c.                          point overflows.
c.    QQ_INT    C*8         Intermediate variable to reduct some calculations
c.                          and eliminate complex zero divide and floating
c.                          point overflows.
c.    SIN_AZ    R*4         The sine of the azimuth angle for a particular
c.                          radial. Rng:[-1,1]
c.    SUM_Q0R   R*4         The variables
c.    SUM_Q3I   R*4         SUM_Q0R -> SUM_Q5R
c.    SUM_Q3R   R*4         are summation
c.    SUM_Q4I   R*4         variables used to
c.    SUM_Q4R   R*4         compute the real and
c.    SUM_Q5I   R*4         imaginary parts of the
c.    SUM_Q5R   R*4         variables Q0 -> Q6.
c.    TWO_N     I*4         Two times the number of data points used to
c.                          perform the least squares fitting.
c.                          Rng:[0,2*NAZIMS]
c.
c.  GLOBAL BLOCKS REFERENCED:
c.
c.
c.  COMMON BLOCKS REFERENCED:
c.
c.
c.  ERROR CONDITIONS:  NONE
c.
c.  ASSUMPTIONS/RESTRICTIONS: NONE
c.
c.  DEVIATION FROM STANDARDS:  None
c.
c.  COMPILATION INSTRUCTIONS:
c.
c.        THIS MODULE IS COMPILED USING THE COMP17.CSS
c.
c.  LINKAGE INSTRUCTIONS:
c.
c.        THIS MODULE IS LINKED USING THE LINK17.CSS
c.
c.  MISC:  This software uses the MKS units system.
c.            If not enough data exist to perform the least squares
c.            fitting, CF1 CF2 and CF3 are returned set to missing
c.
c.
c.*******************************************************************

      IMPLICIT NONE
      REAL MISSING,AZM(NAZIMS),VE(NAZIMS),CF1,CF2,CF3,CF4,CF5
      INTEGER NAZIMS,NRADIALS,DNPT,I
c      COMPLEX Q0,Q5,Q4,Q3,Q2,Q1,CCJ_Q4,INT_COEFF,QQ,QQ_INT
      COMPLEX SUM_R2,SUM_R3,SUM_S1,SUM_S2,SUM_S3,SUM_S4,IX
      COMPLEX a1,b1,c1,d1,e1,a2,b2,c2,d2,e2
      COMPLEX s1,s2,s3,s4,b,c,d,x,e,f,g,y,r2,r3
      COMPLEX P1,Q1,W1,P2,Q2,W2,p,q,AA2,AA1
      REAL AA0,TH1,TH2,TH3,TH4
      REAL SUM_R1,R1
c      REAL SUM_Q0R,SUM_Q5R,SUM_Q5I,SUM_Q4R,SUM_Q4I,SUM_Q3R,SUM_Q3I,
c     $     SIN_AZ,COS_AZ,AZM_RAD
      INTEGER TWO_N
C
C* DTR is the degrees to radians conversion.
C
      REAL DTR
      PARAMETER (DTR=0.01745329)
C
C* zero out variables used for summations.
C
      DNPT=0
C
C* the following variables are used to get the real and
C* imaginary parts of the variables Q3 through Q5.
C
c      SUM_Q0R=0
c      SUM_Q5R=0
c      SUM_Q5I=0
c      SUM_Q4R=0
c      SUM_Q4I=0
c      SUM_Q3R=0
c      SUM_Q3I=0
       IX=(0,1)
       SUM_R1=0
       SUM_R2=0
       SUM_R3=0
       SUM_S1=0
       SUM_S2=0
       SUM_S3=0
       SUM_S4=0
C
C* perform summations for all good data points.
C
      DO 10 I=1,NRADIALS
        IF(ABS(VE(I)).LT.MISSING-0.1) THEN
C
C* convert azimuth angle from degrees to radians.
C
c          AZM_RAD=AZM(I)*DTR
c          TH1=AZM(I)*DTR
c          TH2=AZM(I)*2*DTR
c          TH3=AZM(I)*3*DTR
c          TH4=AZM(I)*4*DTR
          TH1=AZM(I)
          TH2=AZM(I)*2
          TH3=AZM(I)*3
          TH4=AZM(I)*4


C
C* compute sine and cosine of azimuth angle since it is used
C* several times.
C
          SUM_R1=SUM_R1+VE(I)
          SUM_R2=SUM_R2+VE(I)*EXP(-IX*TH1)
          SUM_R3=SUM_R3+VE(I)*EXP(-IX*TH2)
          SUM_S1=SUM_S1+EXP(IX*TH1)
          SUM_S2=SUM_S2+EXP(IX*TH2)
          SUM_S3=SUM_S3+EXP(IX*TH3)
          SUM_S4=SUM_S4+EXP(IX*TH4)

c          SIN_AZ=SIN(AZM_RAD)
c          COS_AZ=COS(AZM_RAD)
C
C* incriment number of good data points.
C
          DNPT=DNPT+1
      print *,'I,TH1,VE=',I,TH1,VE(I)
C
C* perform summations used to construct complex variables Q3 -> Q5.
C
c          SUM_Q0R=SUM_Q0R+VE(I)
c          SUM_Q5R=SUM_Q5R+COS(2*AZM_RAD)
c          SUM_Q5I=SUM_Q5I+SIN(2*AZM_RAD)
c          SUM_Q4R=SUM_Q4R+COS_AZ
c          SUM_Q4I=SUM_Q4I+SIN_AZ
c          SUM_Q3R=SUM_Q3R+VE(I)*COS_AZ
c          SUM_Q3I=SUM_Q3I+VE(I)*SIN_AZ
        END IF
 10   CONTINUE
C
C* if there is at least one good data point, complete calculations.
C
      print *,'DNPT=',DNPT
      IF(DNPT.GT.0) THEN
        R1=SUM_R1/(DNPT)
        R2=SUM_R2/(DNPT)
        R3=SUM_R3/(DNPT)
        S1=SUM_S1/(2*DNPT)
        S2=SUM_S2/(2*DNPT)
        S3=SUM_S3/(2*DNPT)       
        S4=SUM_S4/(2*DNPT)

        a1=2*((abs(S1))**2)-0.5
        b1=2*(conjg(S1))**2-conjg(S2)
        c1=2*((conjg(S1))*S2)-S1
        d1=2*(conjg(S1)*conjg(S2))-conjg(S3)
        e1=2*R1*conjg(S1)-R2

        a2=2*(conjg(S2))*S1-conjg(S1)
	  b2=2*((conjg(S2))*(conjg(S1)))-conjg(S3)
        c2=2*((abs(S2))**2)-0.5
        d2=2*((conjg(S2))**2)-conjg(S4)
        e2=(2*R1*conjg(S2))-R3
	  
	  B=b1/a1
	  C=c1/a1
	  D=d1/a1
	  X=e1/a1
	  E=b2/a2
	  F=c2/a2
	  G=d2/a2
	  Y=e2/a2

	  P1=conjg((C-F)/(B-E))
        Q1=conjg((D-G)/(B-E))
        W1=conjg((X-Y)/(B-E))

        P2=(C/B-F/E)/(1/B-1/E)
        Q2=(D/B-G/E)/(1/B-1/E)
	  W2=(X/B-Y/E)/(1/B-1/E)
	  p=(P1-Q2)/(Q1-P2)
        q=(W1-W2)/(Q1-P2)

	  AA2=(q-p*conjg(q))/(1-(abs(p))**2)
        AA1=W1-(P1*conjg(AA2))-(Q1*AA2)
        AA0=R1-2*realpart(AA1*S1)-2*realpart(AA2*S2)

        CF1=AA0
        CF2=realpart(AA1)
        CF3=imagpart(AA1) 
        CF4=realpart(AA2)
        CF5=imagpart(AA2)       


c        TWO_N=2*DNPT
c        Q0=CMPLX(SUM_Q0R/DNPT)
c        Q5=CMPLX(SUM_Q5R/TWO_N,-SUM_Q5I/TWO_N)
c        Q4=CMPLX(SUM_Q4R/TWO_N,SUM_Q4I/TWO_N)
c        Q3=CMPLX(SUM_Q3R/DNPT,-SUM_Q3I/DNPT)
C
C* compute conjucate of Q4 since it is used several times
C
c        CCJ_Q4=CONJG(Q4)
C* compute QQ (intermediate step) to save computations and to avoid
C* zero divide errors and floating point overflow errors
c        QQ=Q4-1/(4*CCJ_Q4)
c       IF (QQ.NE.0.0) THEN
c         Q2=(CCJ_Q4-Q5/(2*CCJ_Q4))/QQ
c         Q1=(Q0-Q3/(2*CCJ_Q4))/QQ
C
C* compute INT_COEFF since it is used several times.
C
C* compute QQ_INT here, to avoid a zero divisor error and subsequent pause
C
c          QQ_INT=(1-(CABS(Q2))**2)
c          IF (QQ_INT.NE.0.0) THEN
c             INT_COEFF=(Q1-Q2*CONJG(Q1))/(1-(CABS(Q2))**2)
c             CF3=IMAG(INT_COEFF)
c             CF2=REAL(INT_COEFF)
c             CF1=REAL(Q0)-2*REAL(INT_COEFF*Q4)
           
C
C* OTHERWISE, FOURIER COEFFICIENTS ARE MISSING
C
c           ELSE
c             CF1=MISSING
c             CF2=MISSING
c             CF3=MISSING
c           END IF
C
C* OTHERWISE, FOURIER COEFFICIENTS ARE MISSING
C
c        ELSE
c          CF1=MISSING
c          CF2=MISSING
c          CF3=MISSING
c        END IF
c      ELSE
C
C* if you are here, there were not enough data points to
C* compute the coefficients CF1, CF2, CF3.
C
c        CF1=MISSING
c        CF2=MISSING
c        CF3=MISSING
      END IF
      RETURN
      END
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