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Value of accurate land surface model predictions

•Agriculture                                       
(irrigation scheduling)

•Drought/Flood emergency 
management

•Ecological conservation                     
(at-risk species)
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https://lis.gsfc.nasa.gov/software/lis



Subseasonal predictability and soil moisture
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Source: https://iri.columbia.edu/~awr/pycpt/html/system_setup.html

• Initial condition error, lack of 
high-quality observations, 
model-specific parameterization, 
and prediction error growth.

• Differences between reanalysis 
increases uncertainty

• Impact of soil moisture initial 
condition and memory

• Lower forecast skill at subseasonal 
timescale (Lesinger 2024). 



• Zhu et al. (2019) evaluated subseasonal to seasonal forecasts and identified that ECMWF 
had highest skill across China.

• Lower predictability over long leads of soil moisture when compared to atmospheric 
variables

• Lesinger et al. (2024) performed a skill assessment of GEFSv12 soil moisture forecasts and 
found that flash drought forecast skill was very low.

• Large uncertainties between verification datasets.

• Lorenz et al. (2021) predicted soilMERGE reanalysis using a statistical model. Predictors 
included ECMWF subseasonal forecasts.

• Found limited skill for weeks 3-4 for rapid changing soil moisture conditions.

• Su et al. (2022) downscaled and bias corrected soil moisture forecasts. Then forced NOAH 
MP with SubX predictions.

• Found limited skill for week 3-4 for drought onset. 5

Research in subseasonal soil moisture forecasts
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A. Statistical post-processing (Gneiting et al. 2005, Monhart et al. 2018)
I. Ensemble model output statistics 

II. Additive/Multiplicative bias correction 
III. Quantile Mapping

B. Machine-learning (He et al. 2020)
I. Random forest 

II. Fully connected/Dense networks

C. Deep-learning
I. Long-short term memory (Wu et al. 2022; He et al. 2020)

II. Convolutional neural networks (He et al. 2020; LeCun et al. 2015; Gronquist et 
al. 2021, Xu et al. 2023, Tyagi et al. 2022)
I. Models with observations have improved performance

III. Physics-informed neural networks (Pathak et al. 2022)

Methods to improve subseasonal NWP forecasts
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1.) Experimentally evaluate soil moisture forecast skill based on predictor 
selection using a UNet deep learning architecture.

2.) Determine which predictors increase error through permutation tests.
 
3.) Train on different global regions and reforecast ensembles to evaluate 
generalizability of deep learning model. 
  

Research Objectives



8

Data

Model Forecast days # Members Variables Notes

GEFSv12 35 11 Tmax, Tmin, z200, spfh, pwat, SM 
(0-100cm)

SM weighted (0-10cm & 10-100cm), weekly lagged 
observations for lag weeks 1-12. (Guan et al. 2022).

ECMWF
 

45 11 2m temperature, pwat, dewpoint, 
SM (0-100cm). 

Original resolution 1.5° x 1.5°,weekly lagged 
observations for lag weeks 1-12. (Vitart et al. 2018).

Table 1. Description of reforecast datasets. Spatial resolution 0.5° x 0.5°.
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Data

Model Resolution Variables Notes

ERA-5 0.5° x 0.5° z200, pwat, spfh, tmax, SM 
(0-100cm)

SM weighted (0-10cm & 10-100cm), weekly lagged 
observations for lag weeks 1-3. (Hersbach et al. 2020).

GLEAMv3.8a 0.5° x 0.5° SM (0-100cm) SMweighted (0-10cm & 10-100cm), weekly lagged 
observations for lag weeks 1-12. (Martens et al. 2017).

Table 2. Description of observational reference datasets.
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Deep Learning experiments and architecture

DL_OBS

DL_NWP_OBS

DL_BC

Training Period
2000 - 2015

(835 weeks/lead)

Validation Period
2016 - 2017

(104 weeks/lead)

Testing Period
2018 - 2019

(104 weeks/lead)



Anomaly correlation coefficient (ACC) for each experiment.  ACC values are averaged over the United 
States region. Additionally, we averaged across all model experiments of the same type. For example, 
DL_NWP_BC had 3 different experiments and we averaged across all 3 experiments. 11

Results
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Results

Continuous Ranked Probability Score (CRPS) for each experiment.  ACC values are averaged over the 
United States region. Additionally, we averaged across all model experiments of the same type. For 
example, DL_NWP_BC had 3 different experiments and we averaged across all 3 experiments. 
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Feature importance for each variable across weekly leads 1-4 using mean absolute error (MAE) as the 
metric. Each channel was individually perturbed with random Gaussian noise and a new prediction was 
made. Jitter function applied to the variables across week leads. 
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Week 5 ACC spatial skill (hybrid model) 
Raw forecast:                        ECMWF                                                                  GEFSv12

Hybrid DL forecast trained on:                 ECMWF                                                                  GEFSv12

United States ACC spatial skill averaged over the testing dataset 2018-2019. Total of 104 
initializations. 
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Week 5 ACC spatial skill (hybrid model)

Raw forecast:

Australia ACC spatial skill. 

Hybrid DL forecast trained on:

China ACC spatial skill. 
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Conclusions

• Merging deep learning and numerical weather predictions can substantially increase 
soil moisture forecast skill at up to 5 weeks lead.

• Models with lagged soil moisture observation as a predictor had the highest skill.

• Reanalysis soil moisture at weekly lag 1 was the most important predictor.

• Deep learning model is generalizable to different geographical domains and can be 
useful for water resource planning or mitigation. 

• Prediction of extremes (e.g., rapid onset drought) is still not well modelled and can be 
improved with a larger model.
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