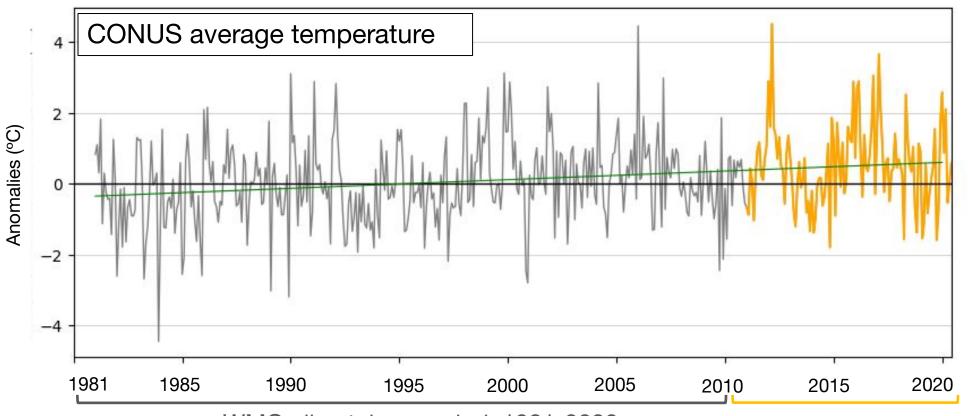


Influence of Trends on Weeks 3-4 Temperature Prediction

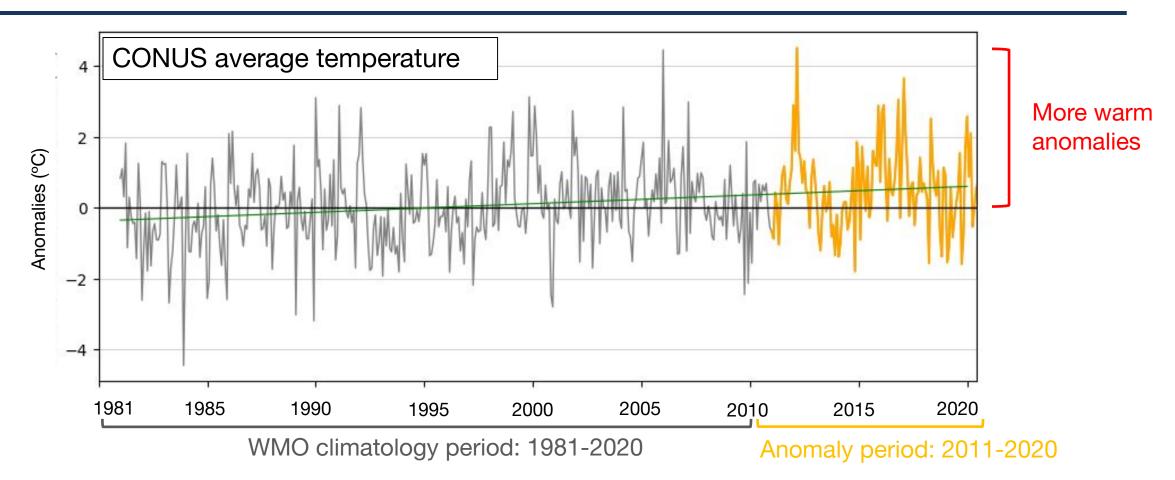
Yuan-Ming Cheng^{1,2}, John Albers², Matt Newman², and Maria Gehne^{1,2}

¹CIRES, University of Colorado, Boulder, Colorado, USA ²NOAA Physical Sciences Laboratory, Boulder, Colorado, USA

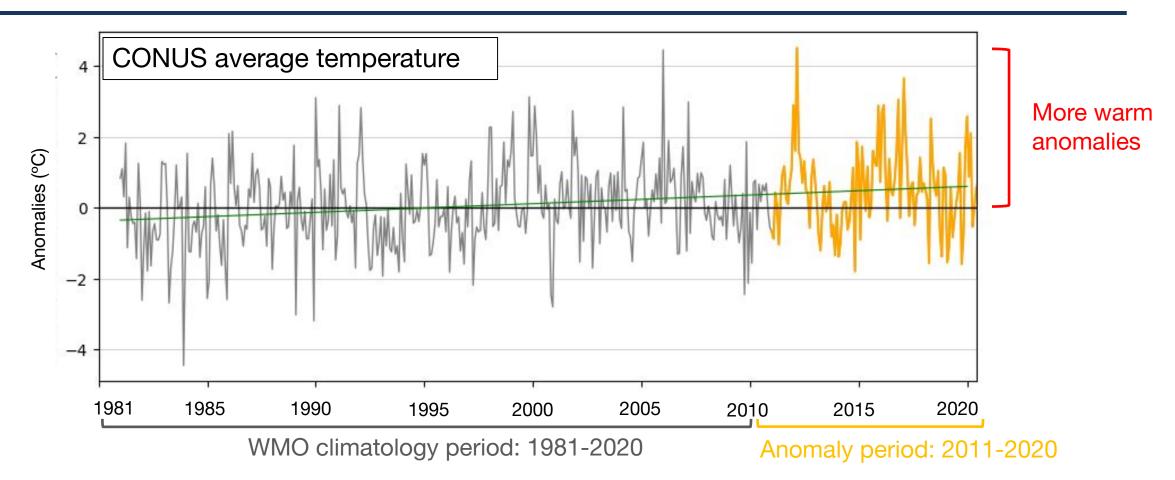


WMO climatology period: 1981-2020

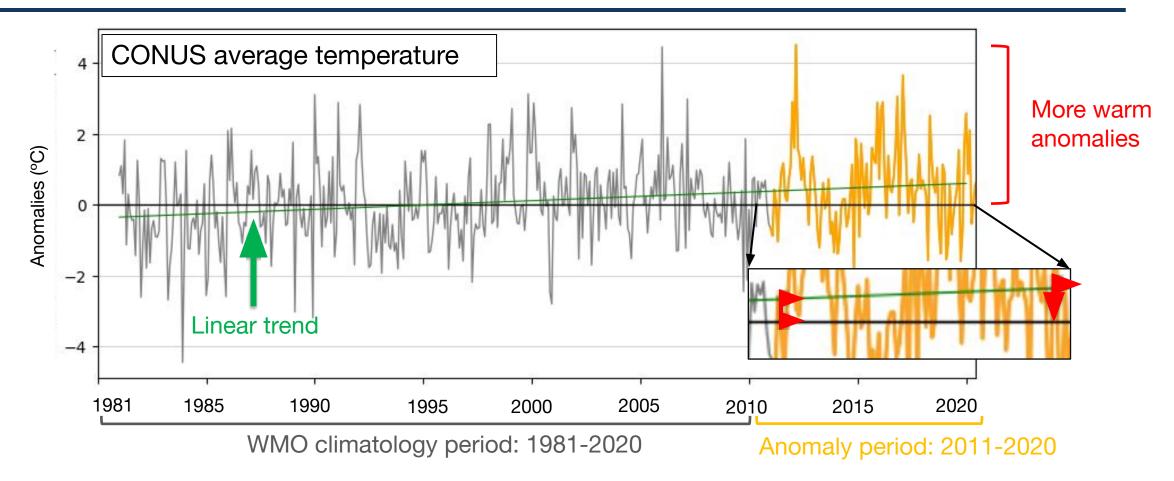
Anomaly period: 2011-2020



Rising temperature leads to anomalies skewed toward warmth



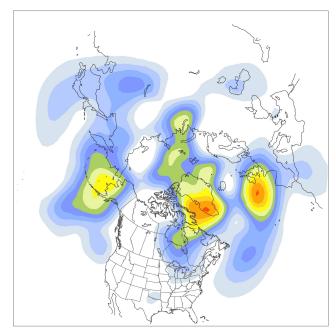
- Rising temperature leads to anomalies skewed toward warmth
- Extended periods of warmth are more common—more persistent warm anomalies

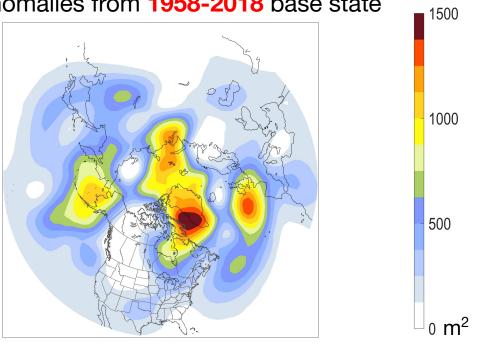


- Rising temperature leads to anomalies skewed toward warmth
- Extended periods of warmth are more common—more persistent warm anomalies
- The period chosen for defining the climate significantly influences the anomalies

"Trend anomaly" leads to more persistent warm anomalies

21-day lag-covariance of 500-hPa geopotential heights for 1999-2018





Any data-driven machine learning method is prone to learning warm biases and persistent warm stretches in the data

Objective

Understand how the temperature trend impacts S2S forecast tools and skill evaluation

- Improve week 3-4 Temperature outlooks
- Compare IFS operational model, Linear Inverse Model (LIM), and Optimal Climate Normals (OCN)

Operational IFS forecast 2017-2022

• uses anomalies derived from fair-sliding 20-year climate of the reforecasts (Risbey et al. 2021)

Operational IFS forecast 2017-2022

• uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

Linear Inverse Model (LIM) v2.0

- approximates S2S variability as linear stochastically forced dynamics
- is trained using JRA-55 data from 1958 to 2016
- uses anomalies from fair-sliding 20-year climate

Operational IFS forecast 2017-2022

uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

Linear Inverse Model (LIM) v2.0

- approximates S2S variability as linear stochastically forced dynamics
- is trained using JRA-55 data from 1958 to 2016
- uses anomalies from fair-sliding 20-year climate

Optimal Climate Normals (OCN)

- calculates the running average of the last 10 years as forecasts
- uses the same JRA-55 anomalies from fair-sliding 20-year climate

Operational IFS forecast 2017-2022

uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

Linear Inverse Model (LIM) v2.0

- approximates S2S variability as linear stochastically forced dynamics
- is trained using JRA-55 data from 1958 to 2016
- uses anomalies from fair-sliding 20-year climate

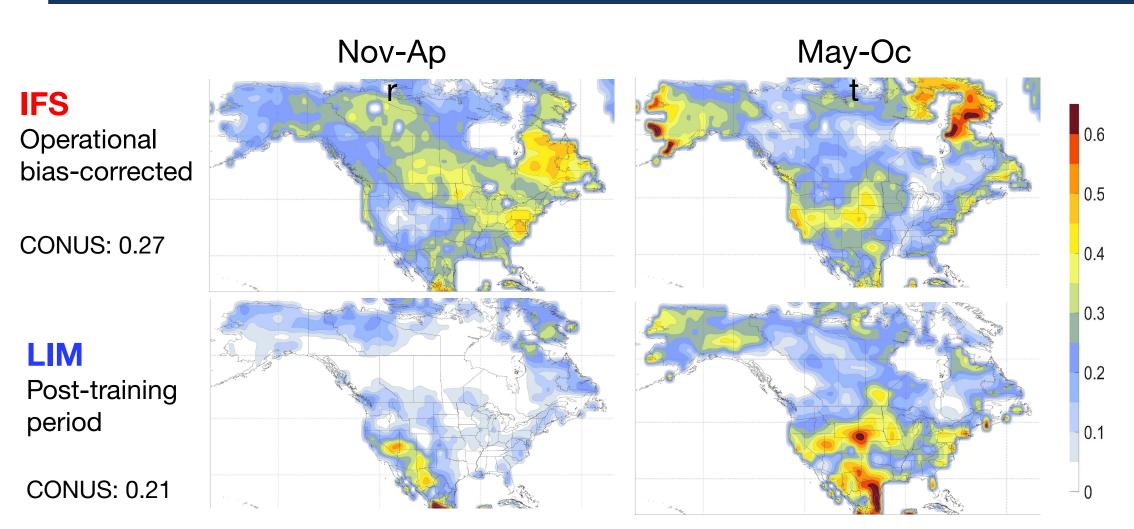
Optimal Climate Normals (OCN)

- calculates the running average of the last 10 years as forecasts
- uses the same JRA-55 anomalies from fair-sliding 20-year climate

Verification: Heidke Skill Score (HSS)

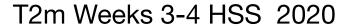
Forecasts are scored against JRA-55 using the same IFS forecast dates in 2017-2022

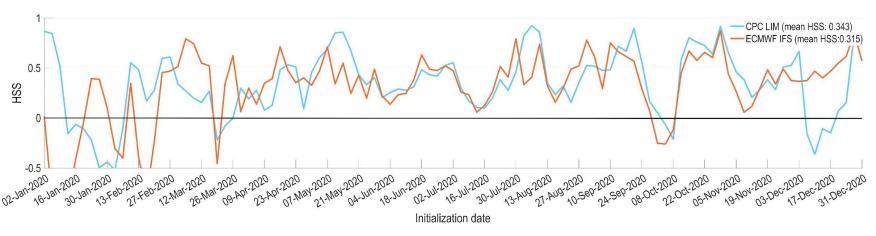
Weeks 3-4 real-time T2m Heidke skill score, 2017-2022



Weeks 3-4 T2m Heidke skill, verified against WMO 30-year climatology

LIM can capture variations of IFS skill from similar sources of predictability

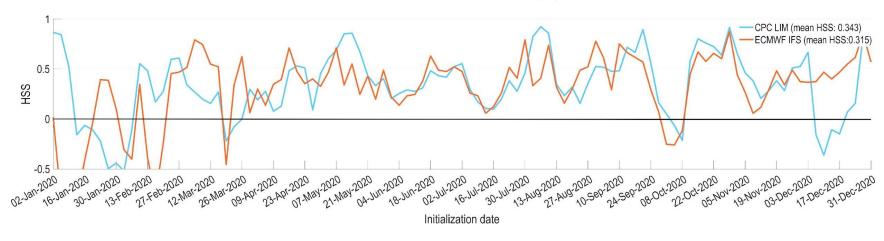




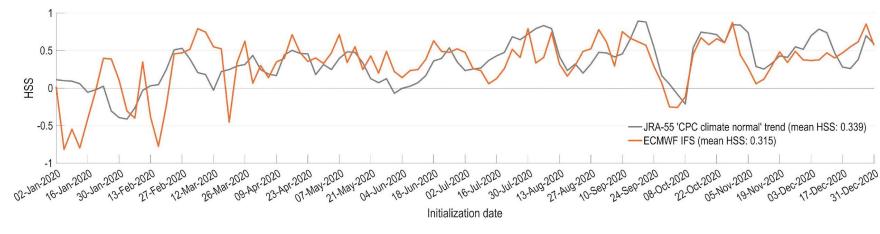
But maybe we are kidding ourselves, since the trend has a huge impact on S2S skill...

T2m Weeks 3-4 HSS 2020

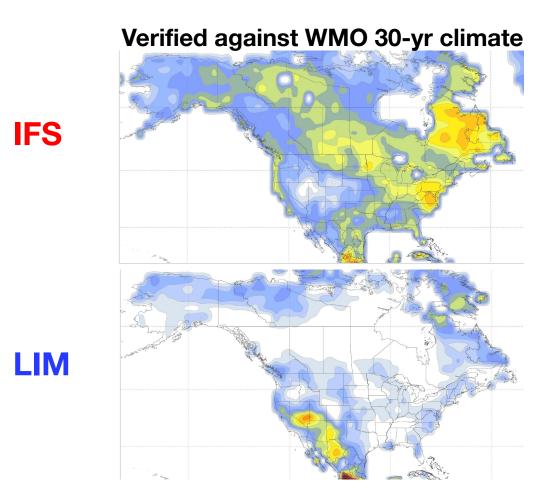
LIM vs IFS



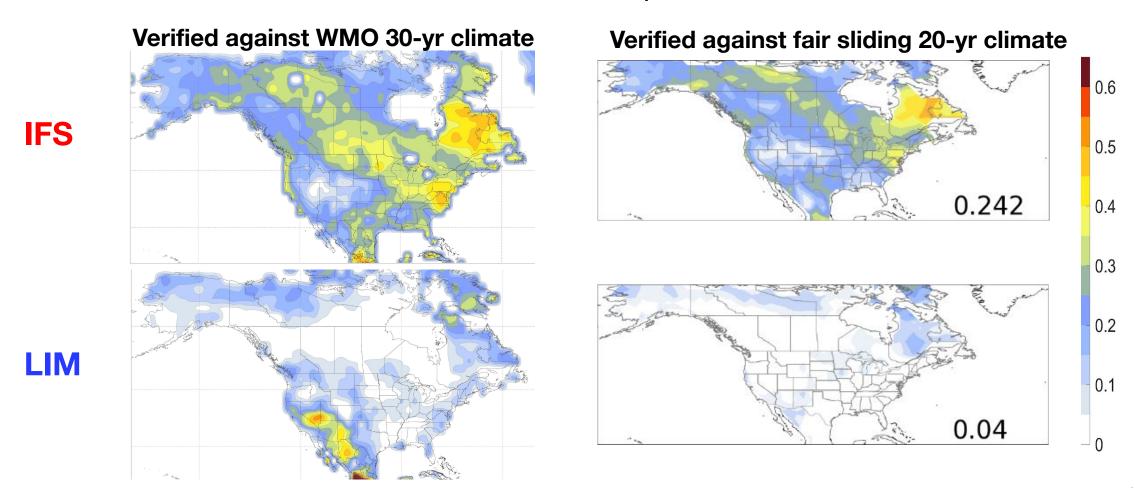
"Trend forecast" vs IFS



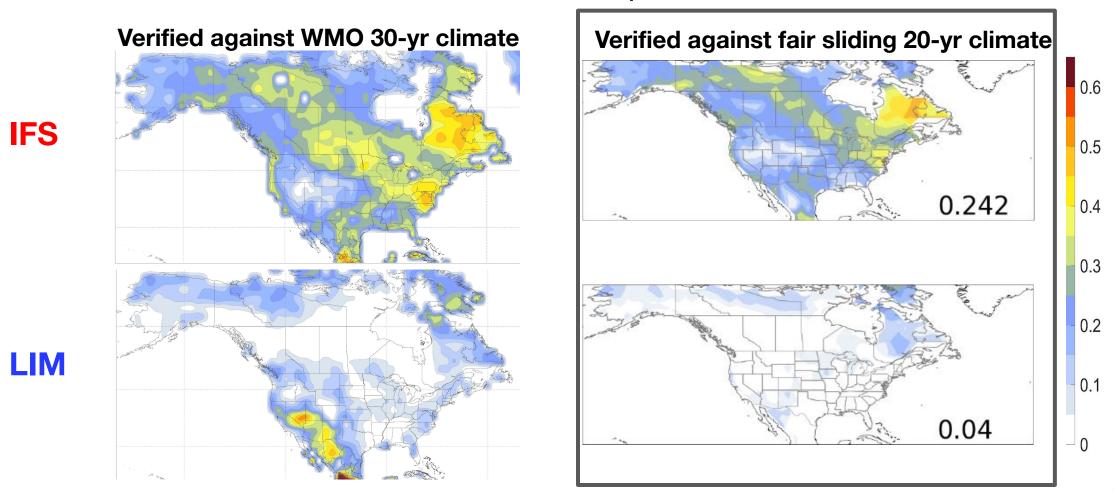
Weeks 3-4 T2m HSS, Nov-Apr 2017-2022

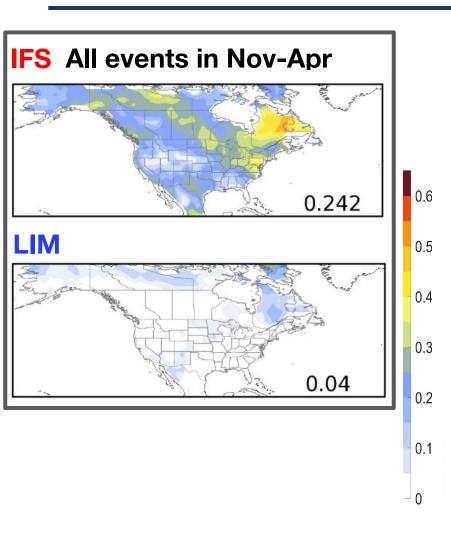


Weeks 3-4 T2m HSS, Nov-Apr 2017-2022

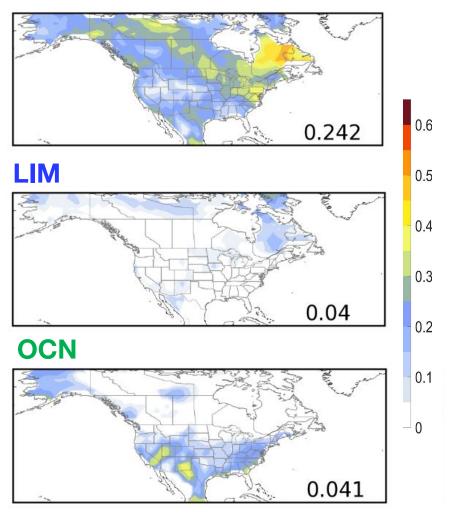


Weeks 3-4 T2m HSS, Nov-Apr 2017-2022

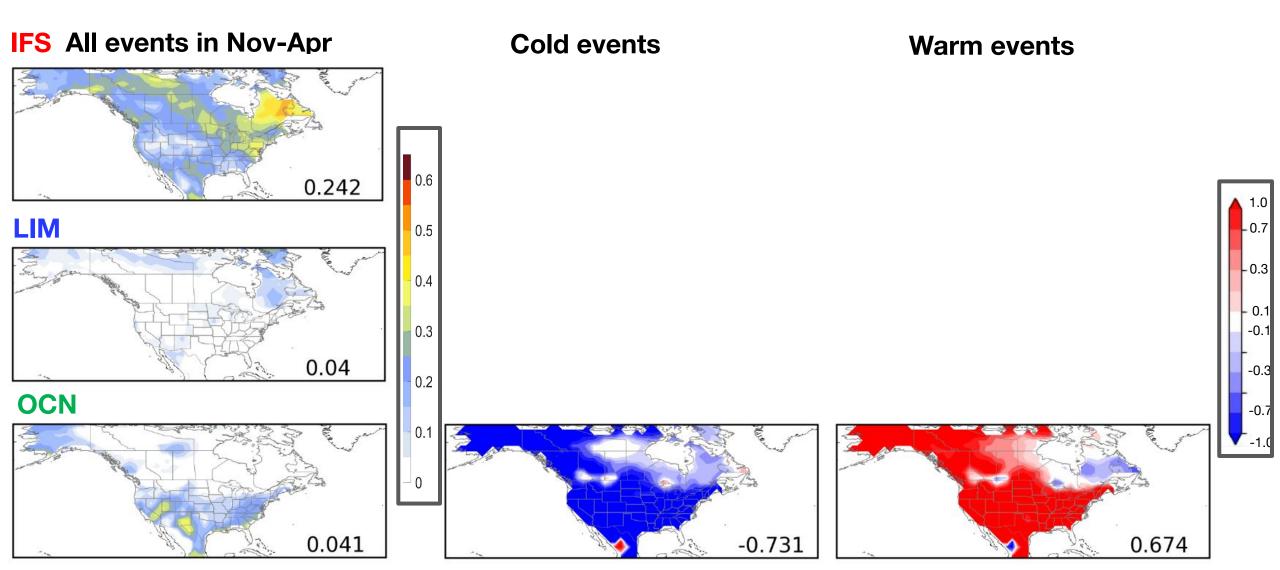




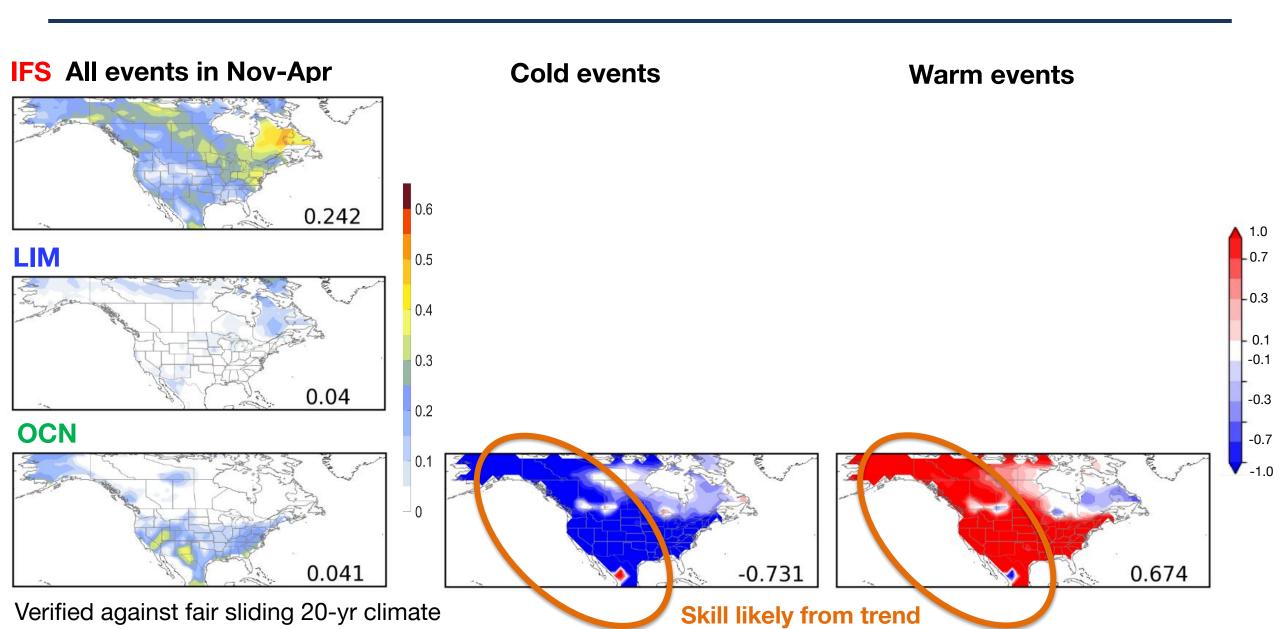
IFS All events in Nov-Apr

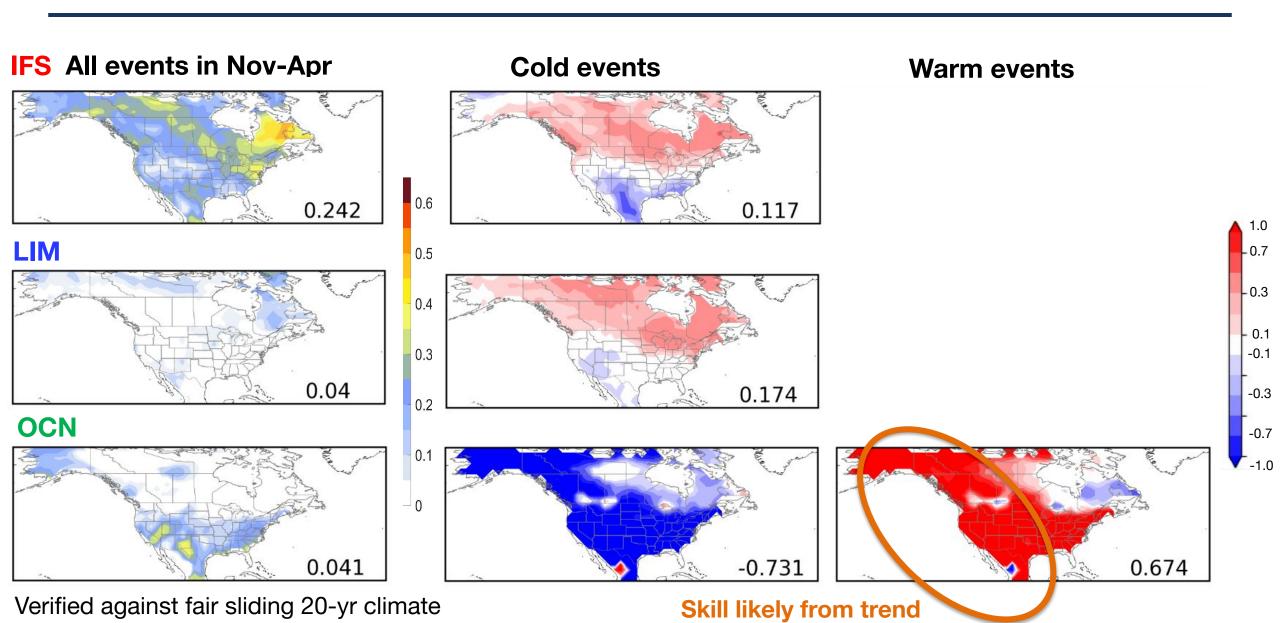


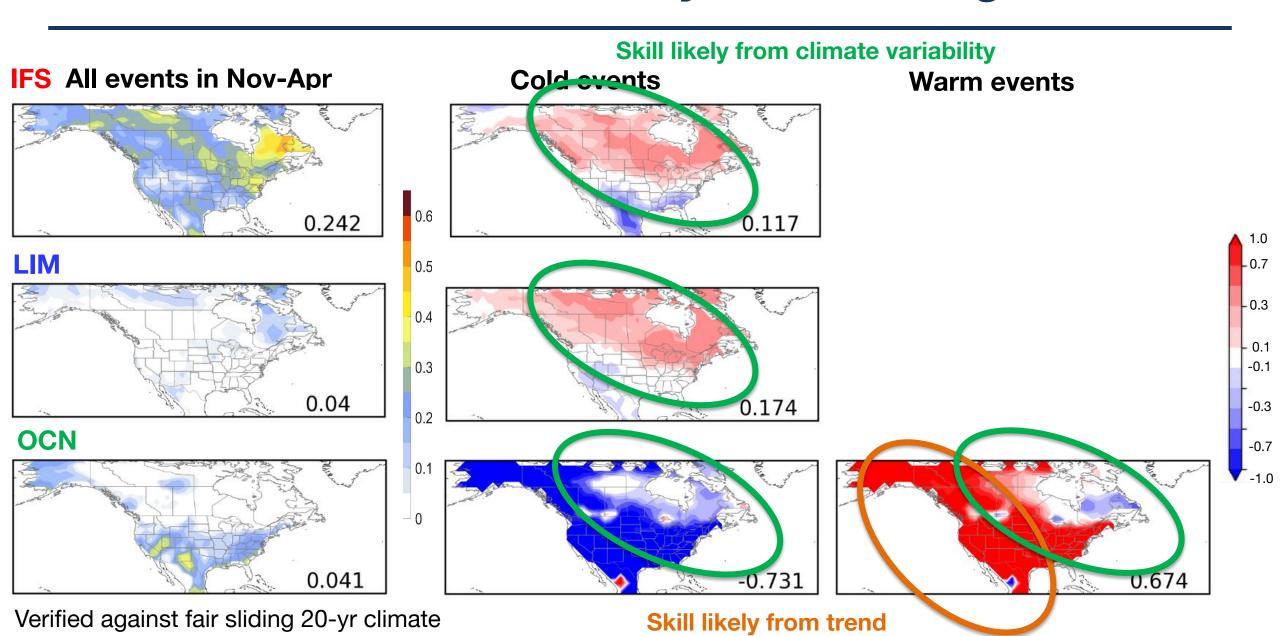
Verified against fair sliding 20-yr climate

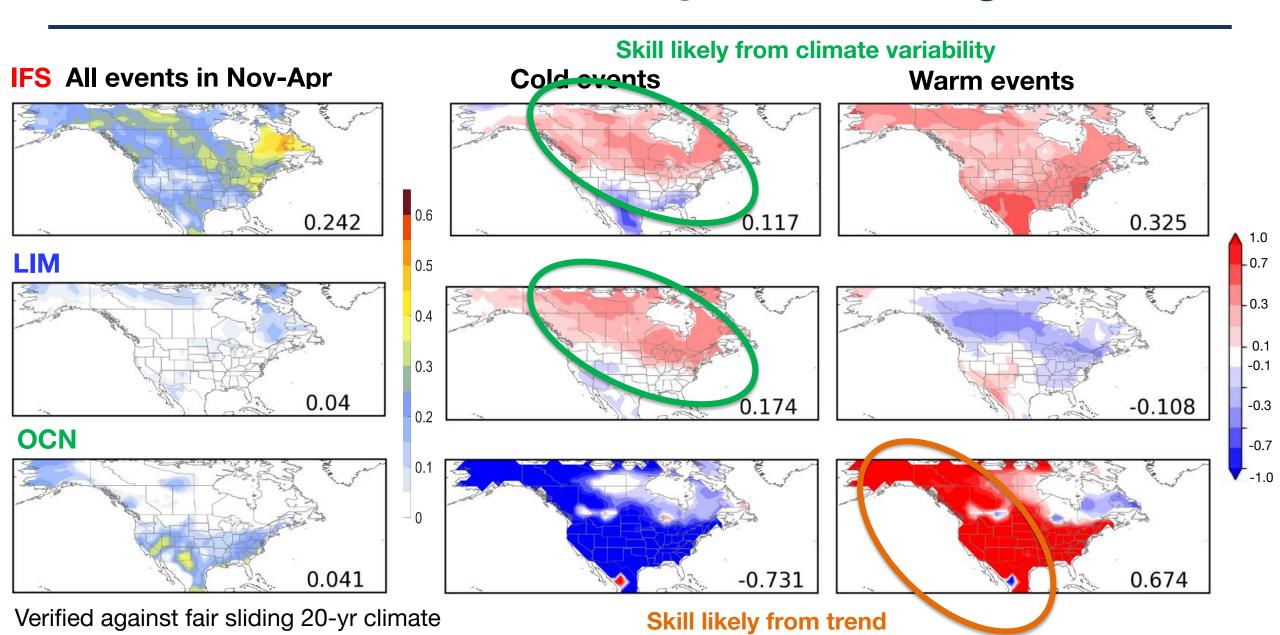


Verified against fair sliding 20-yr climate









Lessons Learned

- Trend is an issue for making S2S machine learning tools and proper skill evaluation
 - Relative to a fixed long-term climate, recent anomalies are skewed toward warmth and are more persistent
 - A fair-sliding climate mitigates this issue

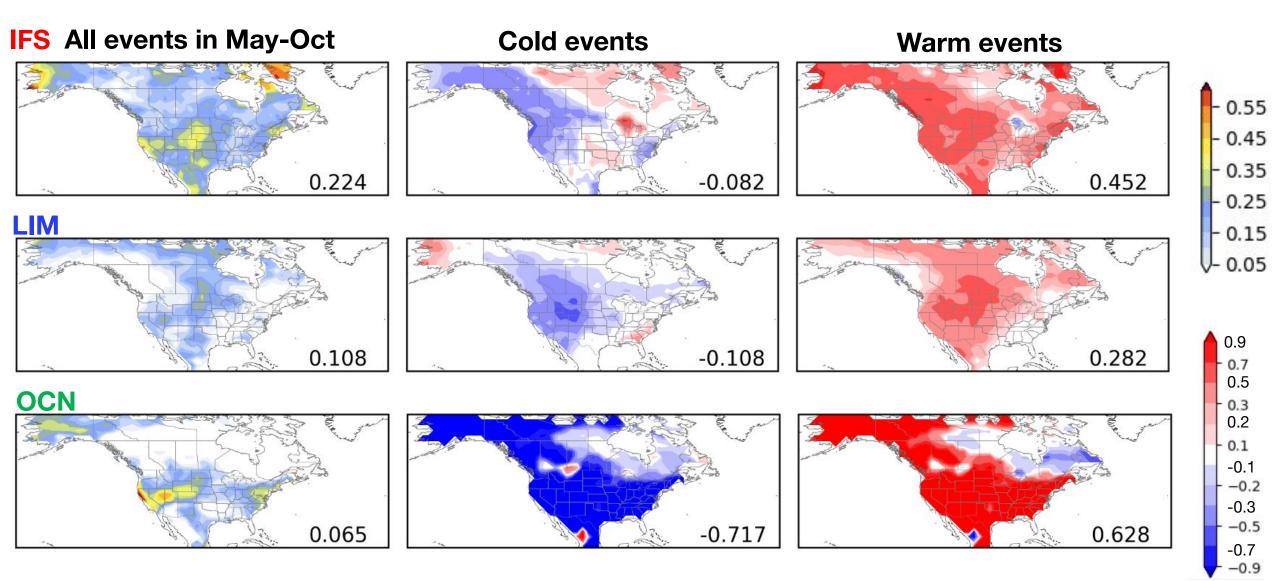
Lessons Learned

- Trend is an issue for making S2S machine learning tools and proper skill evaluation
 - Relative to a fixed long-term climate, recent anomalies are skewed toward warmth and are more persistent
 - A fair-sliding climate mitigates this issue
- Models exhibit a conditional bias, showing better skill in predicting warm events

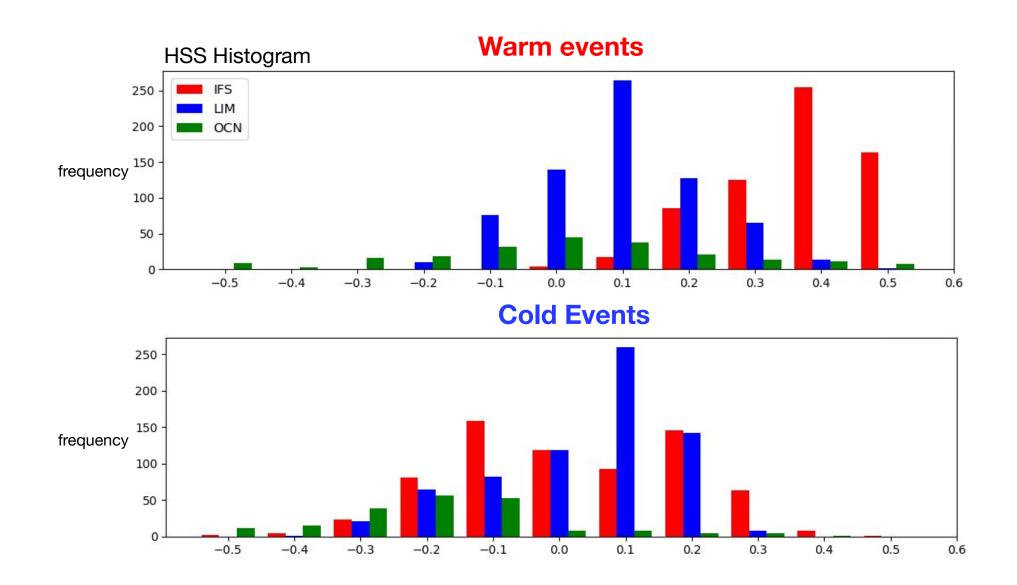
Lessons Learned

- Trend is an issue for making S2S machine learning tools and proper skill evaluation
 - Relative to a fixed long-term climate, recent anomalies are skewed toward warmth and are more persistent
 - A fair-sliding climate mitigates this issue
- Models exhibit a conditional bias, showing better skill in predicting warm events
- When designing an empirical forecasting system, we need to balance between operational priorities and forecasting accuracy
 - We could maximize skill by including trend or
 - We could degrade skill and perhaps have a model that can differentiate between cold and warm forecasts more skillfully

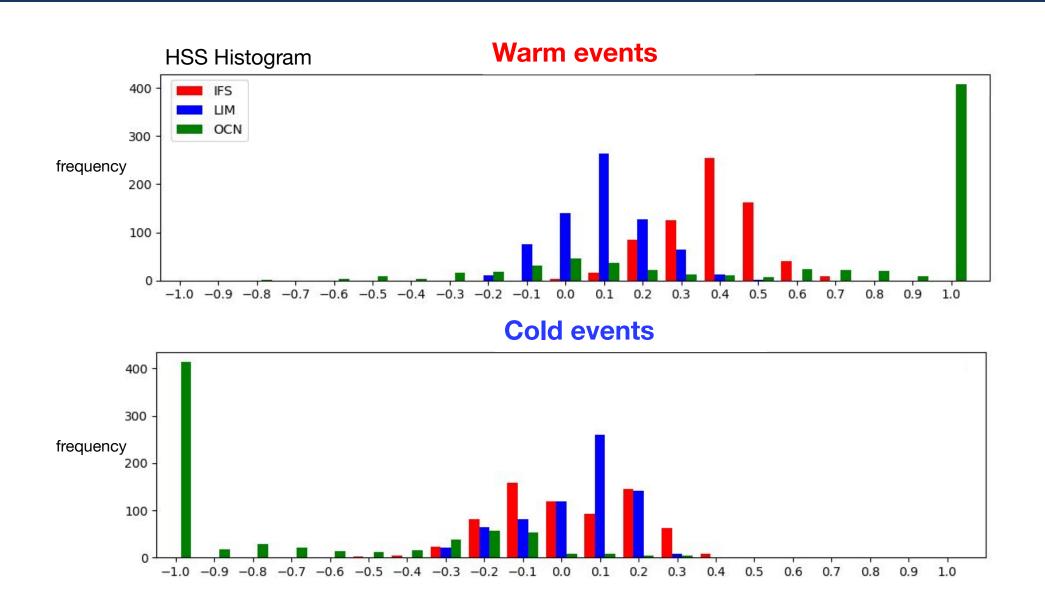
THANK YOU. QUESTIONS?



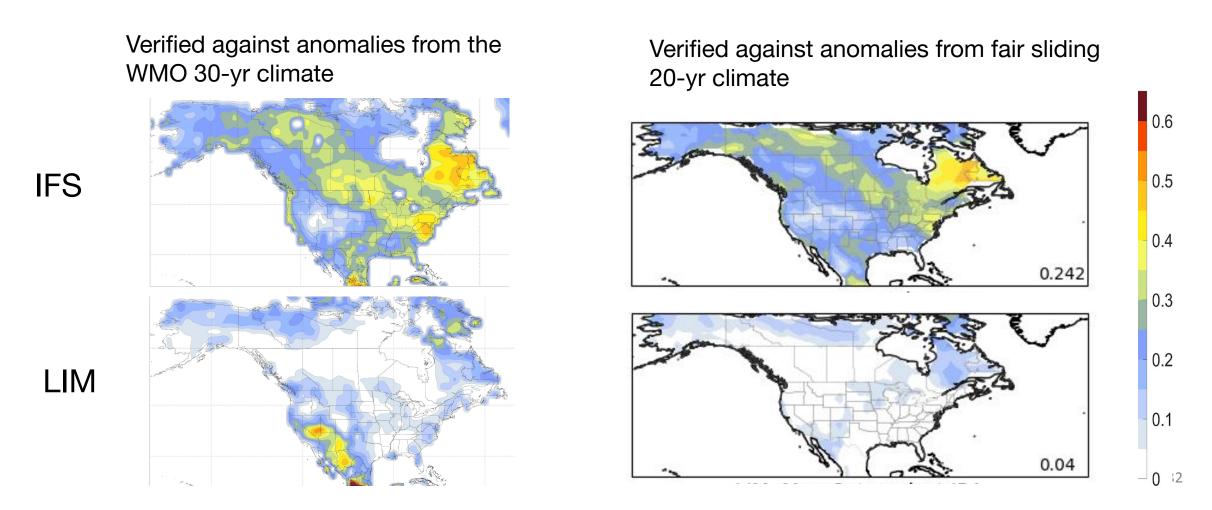
Models are more skillful in predicting warm events



OCN are not so good at predicting cold events



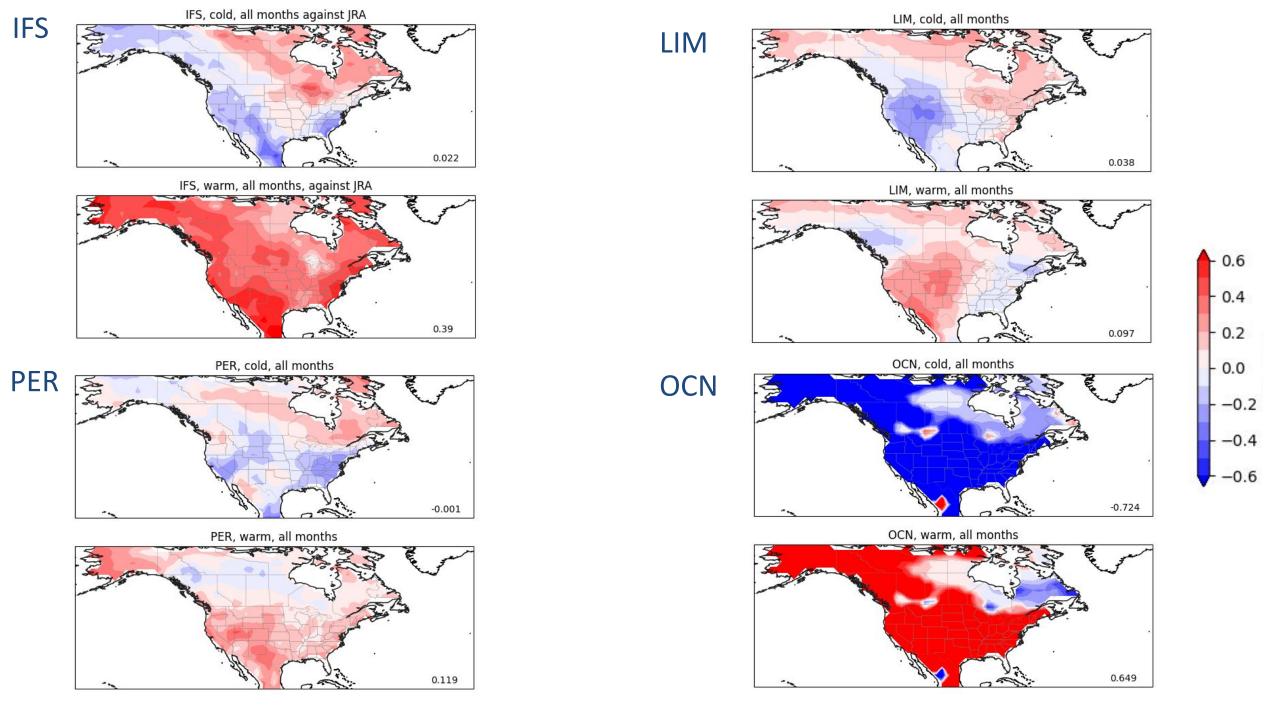
Weeks 3-4 T2m Heidke score, Nov-Apr 2017-2022



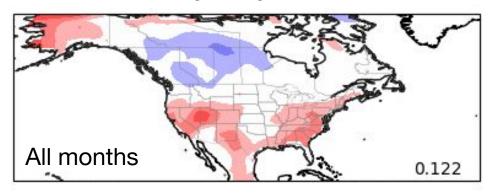
Verifying against official 30-yr climatology could inflate forecast skills

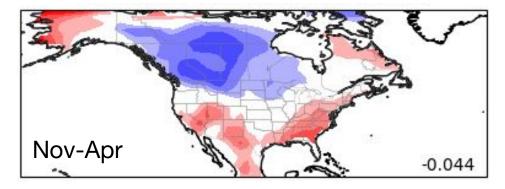
Weeks 3-4 T2m Heidke skill, May-Oct 2017-2022

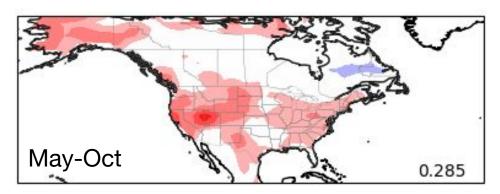
Verified against fair sliding 20-yr climate Verified against official 30-yr climate 0.6 LIM 0.5 0.4 0.108 0.3 **IFS** 0.2 0.1 0.224

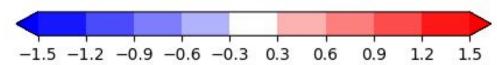


2017-2022









Average anomalies of the sliding mean 'Remaining trend from the sliding climatology'

LIM 2.0: mean state is 'fair-sliding' 20-yr climate

We added new variables to to respond to forecasters' need – diagnosis of forecasts – and to potentially improve skill.

We extended training period to 1958-2016

Trend is a significant part of the anomaly!

Partial solution: "fair-sliding" 20-yr climate: Fixed for 1958-1977, then increments a year at a time (e.g., 1990 anomalies relative to 1970-1989 mean)

Variable	Domain	PCs
Temperature at 2m	North America (24°N-74°N)	7
Soil moisture	North America (24°N-74°N)	5
Pressure at mean sea level	Northern Hemisphere (20°N – 90°N)	20
Tropical sea surface temps	Global Tropics (14°S – 14°N)	8
Tropical heating	Global Tropics (14°S – 14°N)	23
500-hPa Geopotential height	Northern Hemisphere (20°N – 90°N)	14
700-hPa streamfunction	Northern Hemisphere (20°N – 90°N)	8
100-hPa streamfunction	Northern Hemisphere (30°N – 90°N)	8

IFS, 11-4, cold, against JRA IFS, 11-4, warm, against JRA IFS, cold, all months against JRA 0.117 0.325 0.022 IFS, warm, all months, against JRA IFS, 5-10, cold, against JRA IFS, 5-10, warm, against JRA 0.39 -0.082 0.452

LIM, 11-4, cold, against JRA

LIM, 11-4, warm, against JRA

LIM, cold, all months

LIM, cold, all months

LIM, sold, all months

LIM, sold, all months

LIM, sold, all months

LIM, sold, against JRA

LIM, 5-10, cold, against JRA

0.282

-0.108

0.097

OCN, 11-4, cold, against JRA OCN, 11-4, warm, against JRA OCN, cold, all months -0.731 0.674 -0.724 OCN, warm, all months OCN, 5-10, cold, against JRA OCN, 5-10, warm, against JRA 0.649 -0.717 0.628