



# Influence of Trends on Weeks 3-4 Temperature Prediction

Yuan-Ming Cheng<sup>1,2</sup>, John Albers<sup>2</sup>, Matt Newman<sup>2</sup>, and Maria Gehne<sup>1,2</sup>

<sup>1</sup>CIRES, University of Colorado, Boulder, Colorado, USA <sup>2</sup>NOAA Physical Sciences Laboratory, Boulder, Colorado, USA











WMO climatology period: 1981-2020

Anomaly period: 2011-2020



Rising temperature leads to anomalies skewed toward warmth



- Rising temperature leads to anomalies skewed toward warmth
- Extended periods of warmth are more common—more persistent warm anomalies



- Rising temperature leads to anomalies skewed toward warmth
- Extended periods of warmth are more common—more persistent warm anomalies
- The period chosen for defining the climate significantly influences the anomalies

## "Trend anomaly" leads to more persistent warm anomalies

21-day lag-covariance of 500-hPa geopotential heights for 1999-2018









Any data-driven machine learning method is prone to learning warm biases and persistent warm stretches in the data

## **Objective**

Understand how the temperature trend impacts S2S forecast tools and skill evaluation

- Improve week 3-4 Temperature outlooks
- Compare IFS operational model, Linear Inverse Model (LIM), and Optimal Climate Normals (OCN)

#### **Operational IFS forecast 2017-2022**

• uses anomalies derived from fair-sliding 20-year climate of the reforecasts (Risbey et al. 2021)

#### **Operational IFS forecast 2017-2022**

• uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

#### Linear Inverse Model (LIM) v2.0

- approximates S2S variability as linear stochastically forced dynamics
- is trained using JRA-55 data from 1958 to 2016
- uses anomalies from fair-sliding 20-year climate

#### **Operational IFS forecast 2017-2022**

uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

#### Linear Inverse Model (LIM) v2.0

- approximates S2S variability as linear stochastically forced dynamics
- is trained using JRA-55 data from 1958 to 2016
- uses anomalies from fair-sliding 20-year climate

#### **Optimal Climate Normals (OCN)**

- calculates the running average of the last 10 years as forecasts
- uses the same JRA-55 anomalies from fair-sliding 20-year climate

#### **Operational IFS forecast 2017-2022**

uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

#### Linear Inverse Model (LIM) v2.0

- approximates S2S variability as linear stochastically forced dynamics
- is trained using JRA-55 data from 1958 to 2016
- uses anomalies from fair-sliding 20-year climate

#### **Optimal Climate Normals (OCN)**

- calculates the running average of the last 10 years as forecasts
- uses the same JRA-55 anomalies from fair-sliding 20-year climate

#### Verification: Heidke Skill Score (HSS)

Forecasts are scored against JRA-55 using the same IFS forecast dates in 2017-2022

### Weeks 3-4 real-time T2m Heidke skill score, 2017-2022



Weeks 3-4 T2m Heidke skill, verified against WMO 30-year climatology

## LIM can capture variations of IFS skill from similar sources of predictability







## But maybe we are kidding ourselves, since the trend has a huge impact on S2S skill...

T2m Weeks 3-4 HSS 2020

LIM vs IFS



"Trend forecast" vs IFS



Weeks 3-4 T2m HSS, Nov-Apr 2017-2022



Weeks 3-4 T2m HSS, Nov-Apr 2017-2022



Weeks 3-4 T2m HSS, Nov-Apr 2017-2022





#### **IFS** All events in Nov-Apr



Verified against fair sliding 20-yr climate



Verified against fair sliding 20-yr climate









### **Lessons Learned**

- Trend is an issue for making S2S machine learning tools and proper skill evaluation
  - Relative to a fixed long-term climate, recent anomalies are skewed toward warmth and are more persistent
  - A fair-sliding climate mitigates this issue

### **Lessons Learned**

- Trend is an issue for making S2S machine learning tools and proper skill evaluation
  - Relative to a fixed long-term climate, recent anomalies are skewed toward warmth and are more persistent
  - A fair-sliding climate mitigates this issue
- Models exhibit a conditional bias, showing better skill in predicting warm events

### **Lessons Learned**

- Trend is an issue for making S2S machine learning tools and proper skill evaluation
  - Relative to a fixed long-term climate, recent anomalies are skewed toward warmth and are more persistent
  - A fair-sliding climate mitigates this issue
- Models exhibit a conditional bias, showing better skill in predicting warm events
- When designing an empirical forecasting system, we need to balance between operational priorities and forecasting accuracy
  - We could maximize skill by including trend or
  - We could degrade skill and perhaps have a model that can differentiate between cold and warm forecasts more skillfully

## THANK YOU. QUESTIONS?



### Models are more skillful in predicting warm events



### OCN are not so good at predicting cold events



Weeks 3-4 T2m Heidke score, Nov-Apr 2017-2022



## Verifying against official 30-yr climatology could inflate forecast skills

Weeks 3-4 T2m Heidke skill, May-Oct 2017-2022

Verified against fair sliding 20-yr climate Verified against official 30-yr climate 0.6 LIM 0.5 0.4 0.108 0.3 **IFS** 0.2 0.1 0.224



2017-2022









Average anomalies of the sliding mean 'Remaining trend from the sliding climatology'

### LIM 2.0: mean state is 'fair-sliding' 20-yr climate

We added new variables to to respond to forecasters' need – diagnosis of forecasts – and to potentially improve skill.

We extended training period to 1958-2016

Trend is a significant part of the anomaly!

Partial solution: "fair-sliding" 20-yr climate: Fixed for 1958-1977, then increments a year at a time (e.g., 1990 anomalies relative to 1970-1989 mean)

| Variable                    | Domain                            | PCs |
|-----------------------------|-----------------------------------|-----|
| Temperature at 2m           | North America (24°N-74°N)         | 7   |
| Soil moisture               | North America (24°N-74°N)         | 5   |
| Pressure at mean sea level  | Northern Hemisphere (20°N – 90°N) | 20  |
| Tropical sea surface temps  | Global Tropics (14°S – 14°N)      | 8   |
| Tropical heating            | Global Tropics (14°S – 14°N)      | 23  |
| 500-hPa Geopotential height | Northern Hemisphere (20°N – 90°N) | 14  |
| 700-hPa streamfunction      | Northern Hemisphere (20°N – 90°N) | 8   |
| 100-hPa streamfunction      | Northern Hemisphere (30°N – 90°N) | 8   |

IFS, 11-4, cold, against JRA IFS, 11-4, warm, against JRA IFS, cold, all months against JRA 0.117 0.325 0.022 IFS, warm, all months, against JRA IFS, 5-10, cold, against JRA IFS, 5-10, warm, against JRA 0.39 -0.082 0.452

LIM, 11-4, cold, against JRA

LIM, 11-4, warm, against JRA

LIM, cold, all months

LIM, cold, all months

LIM, sold, all months

LIM, sold, all months

LIM, sold, all months

LIM, sold, against JRA

LIM, 5-10, cold, against JRA

0.282

-0.108

0.097

OCN, 11-4, cold, against JRA OCN, 11-4, warm, against JRA OCN, cold, all months -0.731 0.674 -0.724 OCN, warm, all months OCN, 5-10, cold, against JRA OCN, 5-10, warm, against JRA 0.649 -0.717 0.628