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How does warming trend affect temperature
anomalies?
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* Rising temperature leads to anomalies skewed toward warmth
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Rising temperature leads to anomalies skewed toward warmth
Extended periods of warmth are more common—more persistent warm anomalies
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* Rising temperature leads to anomalies skewed toward warmth
« Extended periods of warmth are more common—more persistent warm anomalies
» The period chosen for defining the climate significantly influences the anomalies >



“Trend anomaly” leads to more persistent warm
anomalies

21-day lag-covariance of 500-hPa geopotential heights for 1999-2018

Anomalies from 1999-2018 base state Anomalies from 1958-2018 base state 1500
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Any data-driven machine learning method is prone to learning warm biases
and persistent warm stretches in the data



Objective

Understand how the temperature trend impacts S2S
forecast tools and skill evaluation
— Improve week 3-4 Temperature outlooks

— Compare IFS operational model, Linear Inverse Model (LIM),
and Optimal Climate Normals (OCN)



Method: 3 forecast models and verification

Operational IFS forecast 2017-2022

« uses anomalies derived from fair-sliding 20-year climate of the reforecasts (Risbey et al. 2021)
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Method: 3 forecast models and verification

Operational IFS forecast 2017-2022

« uses anomalies derived from fair-sliding 20-year climate of retrospective forecasts

Linear Inverse Model (LIM) v2.0

« approximates S2S variability as linear stochastically forced dynamics
 is trained using JRA-55 data from 1958 to 2016
« uses anomalies from fair-sliding 20-year climate

Optimal Climate Normals (OCN)

« calculates the running average of the last 10 years as forecasts
» uses the same JRA-55 anomalies from fair-sliding 20-year climate

Verification: Heidke Skill Score (HSS)
» Forecasts are scored against JRA-55 using the same IFS forecast dates in 2017-2022
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Weeks 3-4 real-time T2m Heidke skill score, 2017-2022

IFS

Operational

bias-corrected

CONUS: 0.27

LIM

Post-training
period

CONUS: 0.21

Weeks 3-4 T2m Heidke skill, verified against WMO 30-year climatology
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LIM can capture variations of IFS skill from similar

sources of predictability

LIM vs IFS

T2m Weeks 3-4 HSS 2020

CPC LIM (mean HSS: 0.343)
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But maybe we are kidding ourselves, since the trend has

a huge impact on S28S skKkill...

LIM vs IFS

“Trend
forecast” vs IFS

T2m Weeks 3-4 HSS 2020

CPC LIM (mean HSS: 0.343)
~——ECMWF IFS (mean HSS:0.315)
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—ECMWF IFS (mean HSS: 0.315)
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Verifying against anomalies from WMO 30-yr
climatology could inflate forecast skills

Weeks 3-4 T2m HSS, Nov-Apr 2017-2022
Verlfled agalnst WMO 30 -yr climate
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Verifying against anomalies from WMO 30-yr

climatology could inflate forecast skills
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Verifying against anomalies from WMO 30-yr

climatology could inflate forecast skills
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Are model skills inflated by the warming trend?

IFS All events in Nov-Apr
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Are model skills inflated by the warming trend?

IFS All events in Nov-Apr
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Are model skills inflated by the warming trend?

IFS AII events in Nov-Apr Cold events Warm events
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Are model skills inflated by the warming trend?

IFS All events in Nov-Apr
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Are model skills inflated by the warming trend?

Warm events
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IFS All events in Nov-Apr Cold events
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Are model skills inflated by the warming trend?

IFS All events in Nov-Apr
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Are model skills inflated by the warming trend?

Skill likely from climate variability
Warm events

IFS All events in Nov-Apr
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Lessons Learned

* Trend is an issue for making S2S machine learning tools and proper
skill evaluation

— Relative to a fixed long-term climate, recent anomalies are skewed toward
warmth and are more persistent

— A fair-sliding climate mitigates this issue

25
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Lessons Learned

* Trend is an issue for making S2S machine learning tools and proper

skill evaluation
— Relative to a fixed long-term climate, recent anomalies are skewed toward

warmth and are more persistent
— A fair-sliding climate mitigates this issue
* Models exhibit a conditional bias, showing better skill in predicting

warm events
* When designing an empirical forecasting system, we need to
balance between operational priorities and forecasting accuracy

— We could maximize skill by including trend or
— We could degrade skill and perhaps have a model that can differentiate

between cold and warm forecasts more skillfully



THANK YOU. QUESTIONS?



Are model skills inflated by the warming trend?

IFS All events in May-Oct Cold events Warm events
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Models are more skillful in predicting warm events

HSS Histogram Warm events
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OCN are not so good at predicting cold events

HSS Histogram Warm events
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Verifying against anomalies from WMO 30-yr
climatology could inflate forecast skills

IFS

LIM

Weeks 3-4 T2m Heidke score, Nov-Apr 2017-2022

Verified against anomalies from the Verified against anomalies from fair sliding
WMO 30- yr cllmate 20-yr climate
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Verifying against official 30-yr climatology could

Inflate forecast skills

Weeks 3-4 T2m Heidke skill, May-Oct 2017-2022

Verified against official 30-yr climate Verified against fair sliding 20-yr climate
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IFS

PER

IFS, cold all months against JRA
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LIM 2.0: mean state is ‘fair-sliding’ 20-yr climate

We added new variables to to respond
to forecasters’ need — diagnosis of
forecasts — and to potentially improve
skill.

We extended training period to
19568-2016

Trend is a significant part of the
anomaly!

Partial solution: “fair-sliding” 20-yr
climate: Fixed for 1958-1977, then
increments a year at a time (e.g., 1990
anomalies relative to 1970-1989 mean)

Variable Domain PCs
Temperature at 2m North America (24°N-74°N) 7
Soil moisture North America (24°N-74°N) 5
Pressure at mean sea level Northern Hemisphere (20°N-90°N) | 20
Tropical sea surface temps Global Tropics (14°S - 14°N) 8
Tropical heating Global Tropics (14°S — 14°N) 23
500-hPa Geopotential height Northern Hemisphere (20°N-90°N) | 14
700-hPa streamfunction Northern Hemisphere (20°N - 90°N) 8
100-hPa streamfunction Northern Hemisphere (30°N - 90°N) 8




IFS 11-4, cold agalnsthA
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LIM 11-4, cold agalnstJRA

0.174

LIM 11-4, warm agalnstJRA
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OCN 11 4, cold agalnstJRA

-0.731

OCN 114 warm, agalnstJRA
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