NATIONA. O

Deep Learning Based Long Short-Term Memory
(LSTM) Prediction System for the Indian Ocean
Dipole

Ehsan Bhuiyan, ERT, NOAA / Climate Prediction Center
Li Xu, ERT, NOAA / Climate Prediction Center

JieShun Zhu, Climate Prediction Center

Wassila Thiaw, Climate Prediction Center




Motivation

Estimation of extreme events, such as flood & drought, remains a significant
management challenge.

The Indian Ocean Dipole (IOD) , a climate phenomenon characterized by sea surface
temperature anomalies in the Indian Ocean, plays a significant role in driving extreme
weather events

Traditional methods for estimating the Indian Ocean Dipole (IOD) have limitations,
such as random and systematic errors, which reduce their effectiveness in water
resources planning.

Artificial intelligence (Al) models offer promising avenues for enhancing the
estimation of the Indian Ocean Dipole (IOD).
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Intensity of the IOD is represented by anomalous SST gradient between the western
equatorial Indian Ocean (50E-70E and 10S-10N) and the southeastern equatorial Indian
Ocean (90E-110E and 10S-ON). This gradient is named as Dipole Mode Index (DMI).



State of the IOD
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Why does the Indian Ocean have a
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How does the Indian Ocean Dipole work?

Q -neutraI-Negative Phase

During a positive phase, warm waters are brought up to the western part of the Indian Ocean,
and in the eastern Indian Ocean, cold, deep waters rise to the surface.
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LONG SHORT-TERM MEMORY(LSTM)

] There are three types of gates within a unit:
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] Each unit is like a mini-state machine where
the gates of the units have weights that are
learned during the training procedure.



Research Framework




Research Framework

Dataset:

] Dipole Mode Index (DMI) which is based ERSSTv5( NOAA Extended Reconstructed
SSTV5S)

(1 Date period: 1950-2024

(] Temporal resolution: Monthly

Methodology:
d LSTM Model setup
1 Model optimization
1 Model evaluation:
[ Trained period:1950- 1990 and Testing period:1991-2021
[ Systematic/random error



DMI Value

15 1

10

0.5 1

0.0 1

Actual Data and Predictions

Model Optimization

- Actual Data
- Training Predictions
- Test Predictions

200

400
Time

Training-Validation Loss with and without Regularization
0.040 - - Train Loss with Regularization
- \alidation Loss with Regularization
0.035 1 -== Train Loss without Regularization
- == V\alidation Loss without Regularization
0.030 A
v 0.025 -
2
0.020 A
0.015 A
0.010 - SN, NN vecm e :-_-~'--..s\-¢—a-:‘:~'..:_../\-_/\
800 0 20 40 &0 80 100

Train Score: 0.30 RMSE
Test Score: 0.28 RMSE

Epoch



Predicted DMI

DMIi(Degree C)

Model Evaluation

testing period:1991-2021

Testing period:1991-2021

2 T T T T
R2 Score: 0. B
15{ RMSE 030" Actual DMI
MSE: 0.09 Predicted DMI
MAE: 023 a 1k
10 ® l I I
[N J — ,
05 Ey = f h | |
Q-9
0.0 Ny \
A | b
-05 1k |
o 1991 1995 1999 2003 2007 2011 2016 2020
-10 05 00 05 10 15 Year
Actual DMI
Real-time Prediction
1.5 l I I I | I l I I
1
! m=@== Actual DMI
; w=@= Predicted DMI
1 _
0.5 -




Latitude

Model Evaluation
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Summary

The model evaluation results indicated that the LSTM technique was able to reduce
significantly the random and systematic error with high correlation coefficients.

Realtime -12-month IOD forecasts results indicated the deep learning-based LSTM
model to be capable of forecasting the IOD index (DMI) well in advance with
excellent skills.

The LSTM model forecasts are solely dependent on past observed data and hence
have higher skills in forecasting the 10D index.

The study demonstrates promising results in SST Anomaly forecasting, showcasing
the potential of LSTM model as a reliable tool for climate prediction.

Overall, the development of SST Anomaly forecasting system contributes to the
advancement of climate science and contributes to building climate resilience in the
Indian Ocean region
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