

Department of Commerce ● National Oceanic & Atmospheric Administration ● National Weather Service

NOTICE: This publication is available at: http://www.nws.noaa.gov/directives/.

OPR: W/OPPSD/ES (Benjie Spencer) Certified by: W/OPPSD (Kevin Cooley)
Type of Issuance: Routine

SUMMARY OF REVISIONS: This directive supersedes NWS Instruction 80-304, dated April
21, 2009. Changes were made to (1) Updated this directive to align to the NWS Systems
Engineering approach described in 80-301(1) update Section 2 to present a refined definition of
Systems Engineering relevant to the current NWS environment; (2) add new Section 3 to details
for the Needs and Definition stage for software development; and (3) add new Section 4 to provide
details for Software Design and Development Stage. Finally, changes were made to reflect the
NWS Headquarters reorganization effective April 1, 2015.

COOLEY.KEVIN.C.12004638
26

Digitally signed by
COOLEY.KEVIN.C.1200463826
Date: 2020.06.19 10:01:46 -04'00'

Kevin C. Cooley Date
Director, Office of Planning and Programming for Service Delivery

NATIONAL WEATHER SERVICE INSTRUCTION 80-304

JULY 3, 2020
Office of Planning and Programming for Service Delivery

Systems Engineering

SOFTWARE DEVELOPMENT

http://www.nws.noaa.gov/directives/

NWSI 80-304 JULY 3, 2020

2

Software Development

Table of Contents Page

1 Introduction ... 4
2 Overview of Engineering Life Cycle Approach ... 5
3 Need and Definition Stage .. 5
4 Design and Development Stage .. 6
4.1 Perform Software Development ... 9
4.1.1 Iterative Model .. 10
4.1.2 Traditional Method ... 11
4.2 Software Configuration Management .. 13

5 Operations Validation Stage .. 13
6 Production and Deployment Stage .. 14
7 Operations and Support Stage ... 15
8 Roles and Responsibilities .. 15
8.1 NWS Headquarters (NWSHQ) .. 16
8.1.1 Office of Planning and Programming for Service Delivery (OPPSD) 16
8.2 NWS Regional Headquarters (RQH) and NWS Regional Offices 16
8.3 Project Management Offices (PMOs) .. 16
8.4 System Owners ... 16

9 References and Glossary .. 16
Appendix A - Software Development Plan – Sample Outline... 1
Appendix B - Digital Services Playbook ... 1

NWSI 80-304 JULY 3, 2020

3

Table of Figures
Figure 1: NWS Life Cycle Model ... 5
Figure 2: Need and Definition Stage... 6
Figure 3: Design and Development Stage ... 7
Figure 4: Operational Validation Stage .. 14
Figure 5: Production and Deployment Stage .. 15
Figure 6: Operations and Support Stage ... 15

NWSI 80-304 JULY 3, 2020

4

1 Introduction

This instruction provides guidance on National Weather Service (NWS) Systems Engineering
(SE) for software development. Software development is the process of developing software
through successive phases in an orderly way. This process includes not only the actual writing of
code but also the preparation of requirements and objectives, the design of what is to be coded,
and confirmation that what is developed has met objectives. A key to good software
development is to use a software development life cycle (SDLC) method, which defines the tasks
performed at each step in the software development process. SDLC consists of a detailed plan
describing how to develop, maintain, and replace specific software. The life cycle defines a
methodology for improving the quality of software and the overall development process.
Additional information about the models used within the NWS are in the system development
section of this document. The development of software systems involves a series of
development activities that are driven by the overarching SE approach found in NWS Instruction
80-301: Systems Engineering Process and Life Cycle that does not change for software.

The intent of this instruction is to provide a high-level software approach and a set of activities
that provide a consistent method for software development projects and to provide practical
guidance for implementing that approach. This document is a guide for system program
managers on the expectations of the software development team. The project should include a
software team that is well versed in all aspects of software engineering and not reliant on this
document as guidance for specific software development activities. This document expands on
the material presented in NWS Instruction 80-301: Systems Engineering Process and Life Cycle,
which identifies the five stages of the NWS SE approach and 80-303 Systems Engineering for
New System Development, which describe the activities for the first two life cycle stages: the
Need and Definition Stage, and the Design and Development Stage. This instruction further
describes the inputs, activities, outputs, deliverables, and reviews associated with each stage of
developing software systems with emphasis placed on the Design and Development Stage.
However, the instruction is not meant to be prescriptive and rigid, instead, project teams can
further tailor the information in this instruction to meet the project specific needs, requirements,
constraints, environment, schedule, budget and situation. For example, some software
development projects require completed artifacts to be provided under one deliverable, while
others require an iterative approach whereby successively larger and more complete versions of
the software are built with each iteration of the process model.
Another example of flexible NWS software development is the use of open source software.
Open Source Software is software for which the human-readable source code is available for use,
study, reuse, modification, enhancement, and redistribution by the users of that software. In
other words, OSS is software for which the source code is "open."1 Open Source Development is
a collaborative process, similar to community modeling that is a critical framework for
advancement within scientific organizations. The term “Open” implies the establishment of

1 “Department of Defense”, Clarifying Guidance Regarding Open Source Software (OSS), October 2016

NWSI 80-304 JULY 3, 2020

5

Design &

Development Stage

Operations

Validation Stage

Production &

Deployment Stage

legal and technical governance, sharing infrastructure, and a development process that facilitates
trusted modifications and evaluations within a decentralized software development structure.

2 Overview of Engineering Life Cycle Approach
This instruction focuses on the software development portion of the NWS System Engineering
lifecycle. Software development is integrated within the NWSI 80-301: Systems Engineering
Process and Life Cycle because most, if not all, developmental systems include some amount of
software, and the NWS SE life cycle approach described therein establishes requirements for all
components of the system. Specifically, once the needs and definition stage is complete and
system requirements and a primary design have been developed, an understanding of the role the
software plays in the overall system has been established. This information is provided to the
software development team that then focuses specifically on the software and its requirements.

Although software development is a part of the NWS SE life cycle, it requires a separate
instruction because of the variety of process models that can be used for software development
based on the nature of the software being developed. These various software development needs
facilitate the necessity for a separate instruction for the software aspect of the development of
NWS systems.
The NWS System Engineering Life Cycle Model is shown in Figure 1. The Needs and
Definition Stage is typically the same for any development effort, but software-specific projects
typically start to diverge somewhat from the general SE course during the design and
development stage. During this stage, when requirements are being allocated to software
subsystems, the software development team will use the allocated requirements and preliminary
system design to create a detailed software design. The detailed software design will be used for
software development and the developed code will flow back to the system level for system
integration to be integrated with the rest of the system before deploying the operational system.

Figure 1: NWS Life Cycle Model

3 Need and Definition Stage
The SE process starts with the Need and Definition Stage that is initiated upon recognition of a
need for a new or modified System of Interest. Figure 2 below illustrates the inputs, activities
and outputs of this stage.

Need & Definition

Stage

Operations & Support

Stage

NWSI 80-304 JULY 3, 2020

6

Figure 2: Need and Definition Stage

In the beginning of the Need and Definition Stage, the team members determine if the need is for
the development of new software or the development of upgrades to existing software. Once the
type of change is determined the team will develop a Statement of Need (SON) to document the
reasons for the new/upgraded software. After the SON is complete, stakeholders have been
identified and requirements elicited to support the development of the software’s operational
requirements. These requirements will also be used to develop the Concept of Operations
(ConOps) and perform the Analysis of Alternatives (AoA) for the software system. These
activities define the software needs and the output is used as the basis for designing and
developing the software. More details about the activities and outputs in the Needs and
Definition stage can be found in NWS Instruction 80-303 Systems Engineering for New System
Development.

4 Design and Development Stage
The Design and Development Stage defines, validates, and realizes a System of Interest (SOI)
that meets stakeholder requirements and can be produced, deployed, operated, and supported.
This stage uses the outputs of the Need and Definition Stage as inputs and the primary output of
this stage is the System of Interest approved for entering Operational Test & Evaluation. Figure 3
below illustrates the inputs, activities and outputs of this stage.

Input
No • Systems Analysis

Is this a new
project?

Input
Yes

• Business Case

Mission Need
Statement

Activities

Develop a Statement of Need

Identify Stakeholders

Elicit requirements from
stakeholders

Define the operational requirements

Develop Concept of Operations
 (ConOps)

Conduct a systems architecture
analysis

Perform an Analysis of Alternatives
(AoA)

Conduct an Independent
Government Cost Estimate (IGCE)

Outputs

Statement of Need Document

Operational Requirements
Document

Concept of Operations
(ConOps) with Use Cases

System Architecture Document

Analysis of Alternatives Report

Independent Government Cost
Estimate (IGCE)

NWSI 80-304 JULY 3, 2020

7

Inputs

• Statement of Need
Document (SON)

• Operational Requirement
Document

• Concept of Operations
(ConOps) with Use Cases

• System Architecture
Document

• Analysis of Alternatives

Report

• Independent Government
Cost Estimate (IGCE)

Activities

• Develop and document system requirements

• Conduct System Requirements Review (SRR)

• Conduct and document System Design

• Conduct Preliminary Design Review (PDR)

• Develop Requirement Traceability Matrix (RTM)

• Conduct and document Detailed Design

• Conduct Critical Design Review (CDR)

• Establish Configuration Control Board (CCB)

• Perform system development

• Develop Test and Evaluation Master Plan (TEMP)

• Conduct Development Test & Evaluation

• Perform integration and conduct System Integration
Test

• Develop Operations and Maintenance Manual

• Develop System Acceptance Test (SAT) Plan and
Procedures

• Conduct System Acceptance Test (SAT)

• Develop Training Materials

• Develop Deployment Plan and Lifecycle Support
Plan

• Prepare Program Management Responsibility
Transfer (PMRT) Plan

Outputs

• Acceptance Test (SAT) Report

• Approved System Requirements
Specification (SRS)

• Requirements Traceability Matrix
(RTM)

• Approved Detailed Design Document

• Test and Evaluation Master Plan
(TEMP)

• System

• Verified and accepted First Article
system

• Training materials

• Deployment Plan

• Lifecycle Support Plan

• Installation and Deployment Procedures

• Program Management Responsibility
Transfer (PMRT)

Figure 3: Design and Development Stage

The first activity of the Design and Development Stage is to Develop and Document System
Requirements. During this activity, the stakeholder needs and operational requirements are used
to develop functional and technical system requirements that define what the capabilities of the
System of Interest are and how well the capabilities have to perform. After the requirements are
developed and documented, the team conducts a System Requirements Review (SRR). The SRR
is a technical review of the system requirements that examines the requirements defined for the
system and ensures that an accurate, complete, and achievable set of requirements has been
developed and that the selected concept will satisfy the need. SRR completion leads to
conducting and documenting the system design to produce the high-level design defining the
overall framework of the system and describe how its structure satisfies the requirements. The
next review after the system design is the Preliminary Design Review (PDR) to demonstrate that
an acceptable preliminary design is in place that will account for system requirements, thereby
fulfilling the operational requirements.
Once the PDR is complete, a Requirements Traceability Matrix (RTM) is developed to document
the life cycle of each requirement and provide bi-directional traceability between associated
requirements. The PDR also leads to conducting and documenting the detailed design, which
encompasses a description of the architecture, subsystems, components, interfaces, and data
structure definitions before development begins. After the detailed design is complete, the

NWSI 80-304 JULY 3, 2020

8

design team conducts a Critical Design Review (CDR) to demonstrate that all system and
operational requirements are within the provided risk, cost, and schedule constraints.
The CDR baselines the design and creates a need to establish a Configuration Control Board
(CCB) to govern changes to and versioning of approved system changes. After CDR the team
can perform system development and proceed with the full development of the system. This
includes all subsystem development of hardware components, software units and/or modules,
and required interface capabilities.
As the system is being developed, test planning will start. The first aspect of test planning is to
develop the Test and Evaluation Master Plan (TEMP) which establishes the overall testing
philosophy and strategy to be followed through operational testing, provides an integrated test
program schedule, a description of the overall test and management process, and provides
guidance regarding documentation and issue reporting requirements. After test planning, the
team conducts Development Test & Evaluation (DT&E) to verify system development against
approved system requirements. The team also engages in the activities to integrate the various
system components and modules as a whole system within a controlled environment and conduct
system integration test.
During system development, the team also develops the Operations and Maintenance (O&M)
Manual. The O&M Manual includes detailed system installation and configuration procedures
that are used in both the initial installation to support Operational Test and Evaluation (OT&E)
and all subsequent field installations during full system deployment.
Once the system has been integrated, System Acceptance Test (SAT) plan and procedures are
developed to document the test management, preconditions and test setup, mechanics of test
performance, test schedule and required personnel, success criteria, and documentation
requirements for the SAT. The SAT plan guides the team through conduct of SAT to verify that
the design solution meets all of the system technical requirements and is prepared for a
successful Operational Test and Evaluation (OT&E).
A successful SAT enables the team to develop training materials to ensure that end-users can be
trained on how to use the system and support personnel can be trained on how to support it
operationally. It also enables the development of the Deployment Plan and Life Cycle Support
Plan, which describes the strategy and logistics of how, when, and by whom the deployment of
the system will be executed and the strategy and logistics planning for how the system will be
supported and maintained throughout its operational life cycle. Finally, during this stage, a
Program Management Responsibility Transfer (PMRT) Plan is prepared to define the transfer of
the system from development to an operations and maintenance organization.
More details about the activities and outputs of the Design and Development stage can be found
in NWS Instruction 80-303 Systems Engineering for New System Development.

The following sections detail the NWS software development process within the NWS systems
engineering life cycle for new systems. Although there are other activities that the software team
performs during the system lifecycle, most of them are the same or very similar to the system
engineering activities. These software activities are performed once the system is decomposed to

NWSI 80-304 JULY 3, 2020

9

software subsystems and system requirements are allocated to specific software subsystems. The
following section focuses on the software activities that are vastly different from the NWS
system engineering activities. In addition to the NWS software development process, Appendix
B contains a summary of the digital playbook, released by OMB, which details 13 best practices
designed to help agencies deliver digital products and services quicker and more efficiently.

4.1 Perform Software Development
This activity develops the software for the system that meets the requirements and the detailed
design documentation. Specifically, the software development team analyzes the technical design
specifications and then develops and implements the required software capabilities. This
involves coding, verification, unit testing and debugging by the developers. These activities start
with creating planning documents such as a Software Development Plan (SDP). The SDP
describes the developer’s plan for conducting a software development effort and a sample outline
of the plan is provided in appendix A. This activity also includes choosing a software
development model to provide structure for how the various tasks related to software
development are organized. The software development model should be selected based on the
nature of the project and application. The two standard models used within NWS are the
following:
 Iterative Model – This is a process where the development phases are repeated in cycles

with a feedback loop after each cycle is completed. The project team learns from the
preceding cycles and plans the next cycle to converge on the final implementation
solution.
 Strengths

o Provides maximum business value within the given time and cost constraints
o Delivers finished, tested, usable code with each iteration
o Provides flexibility and quick feedback which is used to plan the next iteration

 Weaknesses
o High reliance on meaningful customer involvement leads to higher levels of

risk
o Changes in scope results in rework through multiple iterations

• Traditional Model – This is a sequential software development process, where progress
flows in sequence toward the conclusion. Each phase of the development is completed
before proceeding to the next phase in the sequence.

o Strengths of using the traditional model:
 Provides a structured, disciplined method and can be useful for

maintenance projects and small projects with clearly defined and
understood requirements.

 Simple and easy to understand and use.
 Since the phases are rigid and precise, one phase is done one at a time, it is

easy to maintain.
 The entry and exit criteria are well defined, so it easy and systematic to

proceed with quality.
o Weaknesses of using the traditional model:

NWSI 80-304 JULY 3, 2020

10

 Can prove to be a risky and inflexible model. With only a single pass
through the process, integration problems often surface too late in
development, and a completed product is not available until the very end
of the process

 Can discourage customer involvement and lead to a system which does
not meet changing customer requirements.

 Cannot adopt to the changes in requirements
 Delivery of the final product is late as there is no prototype which is

demonstrated intermediately.

The traditional model is not recommended for most NWS software development projects.

4.1.1 Iterative Model
The Iterative development model is a way of breaking down the software development of a large
application into smaller parts. In Iterative development, code is designed, developed, and tested
in repeated cycles that each incorporate additional features until there is a fully functional
software application ready to be deployed to customers. The following sections provide a high-
level view of the Iterative activities but do not provide a detailed explanation of the paradigms or
provide details regarding process.

4.1.1.1 Initiation
The initiation phase explores ideas and identifies a potential implementation strategy for
implementing them. This phase also obtains agreement on software functions, features, and flow.
Initiation will include forming the initial development team, developing a common vision for the
software that will be developed, and ensuring this vision aligns with the system vision that was
established in the Need and Definition Stage of the NWS System Engineering Life Cycle Model.
During initiation, a release plan is developed that details when various functionality of the
software will be released. As code is developed, the iterative method allows the release plan to
be updated as more information is known. Initiation also defines the requirement modeling and
planning with stakeholders, architecture modeling, and set up of the development environment
and development tools.

4.1.1.2 Analysis
Analysis is needed to understand the ‘what’ and ‘why’ of the software that needs to be
developed. The analysis also estimates the cost and prioritizes the order of the functionality and
requirements. This is also where analysis modeling can be used, which does not require formal
documentation, but can be documented in a variety of ways such as activity diagrams, class
diagrams, and/or use case diagrams. During the analysis, the team defines the software
architecture and the software usage patterns, develops a functional architecture, defines the
software navigation paths, and creates a user interface mockup.

NWSI 80-304 JULY 3, 2020

11

4.1.1.3 Design
During the design phase, developers and technical architects start the high-level design of the
software to be able to deliver each requirement. Like the rest of the iterative method, this is an
iterative process and is performed for each release. For the release, the selected architectural
design defines all the components that need to be developed. In addition, the design defines user
flows and database communications, as well as front-end representations and behavior of each
component. This phase will also ensure that all of the critical tools, processes, standards, and
guidelines identified in the initiation phase have been put in place for the implementation phase.

4.1.1.4 Implementation
The focus of the implementation phase is to develop the software to the point where it is ready
for pre-production testing. This development is based on the requirements and architecture that
have been created in the design phase. The development team codes individual software units
using the programming language(s) selected for the project. Specifically, the developers write
source code in the selected programming language(s) that performs the logic documented during
the critical design. The software code is developed and tested before being released. The
releases can be internal or external releases depending on the release plans. Coding is performed
in these iterative releases until all functionality of the software is developed to meet
requirements.

4.1.1.5 Acceptance
The acceptance phase consists of extensive testing of the developed software, including beta
testing. The results of this testing will cause fine-tuning of the software as well as rework to
address defects. Once this level of acceptance testing is accomplished, the output of this phase is
the complete software ready for delivery into production or integration into the larger
developmental system.

4.1.2 Traditional Method
Traditional model is a software development model in which activities are divided into
sequential phases with each phase consisting of series of tasks with different objectives. The
phases in the traditional method produce output that becomes the input of the next phase. In
addition, the traditional model allows one development phase to start only when the previous
phase is complete. This sequential nature ensures each phase of the model is precise and well
defined.

4.1.2.1 Initiation
The initiation phase of the traditional method builds on the information developed during the
Need and Definition Stage of the NWS System Engineering Life Cycle Model. This phase
leverages the artifacts of the Need and Definition Stage to plan a software solution to meet
business and operational needs. The operational and system requirements are decomposed into
software requirements for the software that will be developed. The initiation phase also
documents the development process, best practices, and conventions that that will be used as the

NWSI 80-304 JULY 3, 2020

12

software is developed. The team also selects the industry standard methods for software
development that will be used to document requirements, identify delivery stages, create
configuration control procedures, develop technical tracking and control processes, and specify
the review process. These activities form the foundation that is used for the software analysis.

4.1.2.2 Analysis
During the analysis phase, the software architecture is created. The software architecture defines
an overall structure of the software and the ways in which the structure provides conceptual
integrity for a system. The architecture is structured to meet all the technical and operational
requirements, while optimizing the common quality attributes like performance and security.
The architecture also describes the structure and organization of subsystem, the manner in which
these subsystems interact, and the structure of data that is used by the subsystem. In addition to
the software, the architecture accounts for any hardware, databases, and third party frameworks
the software interacts with or uses. The architecture also provides a design plan that describes
the software elements of a system and how they will fit and work together to fulfill the
requirements of the system.

4.1.2.3 Design
The traditional design decomposes the software architecture developed in the analysis phase into
software modules. Module specifications are then produced to define what each module is to do,
but not how the module is to be coded. The module specifications provide a level of detail that
gives objective oriented guidance to the software developers without constraining them to one
particular programming algorithm. Each module created in this process will have a concise
description of purpose, explanation of hierarchical relations with other modules, and a reference
back to a particular requirement or set of requirements. Each module and data structure is
considered individually during design with emphasis placed on the description of internal and
procedural details. The team communicates the design via process flow diagrams and/or other
logical, organizational documents that are developed using software modeling.

4.1.2.4 Implementation
Once the design is complete, the development team can begin coding software for the system.
The development team codes individual software units using the programming language(s)
selected for the project. Specifically, the developers write source code in the selected
programming language(s) that performs the logic documented during the critical design. After
coding is complete, developers perform unit testing to thoroughly test and identify as many
defects as possible. Identified defects are analyzed and corrected, and testing is repeated until all
known defects are fixed.

4.1.2.5 Software Versioning
After testing is performed and defects are resolved, the software is baselined as an approved
"build" of the product. This build will be provided for integration with other hardware and
software of the system. Each of these builds will go through software versioning to assign either

NWSI 80-304 JULY 3, 2020

13

unique version names or unique version numbers to unique states of computer software. Within a
given version number category (major, minor), these numbers are assigned in increasing order
and correspond to new developments in the software.

4.2 Software Configuration Management
Software Configuration Management (SCM) applies to all software development processes.
SCM manages the evolution of software products, both during the initial stages of development
and during all stages of maintenance. A software product encompasses the complete set of
computer programs, procedures, and associated documentation and data designated for delivery
to a user. All supporting software used in development, even though not part of the software
product, should also be controlled with the SCM process. The SCM process evaluates,
coordinates, approves or disapprove and implements changes in artifacts that are used to
construct and maintain software systems. Some of the SCM activities are the following:

• Management of the SCM Process
SCM controls the evolution and integrity of a product by identifying its elements;
managing and controlling change; and verifying, recording, and reporting on
configuration information.

• Software configuration identification
Identifies items to be controlled, establishes identification schemes for the items and their
versions, and establishes the tools and techniques to be used in acquiring and managing
controlled items. These activities provide the basis for the other SCM activities.

• Software Configuration Control
Manages changes during the software life cycle. It covers the process for determining
what changes to make, the authority for approving certain changes, support for the
implementation of those changes, and the concept of formal deviations from project
requirements as well as waivers of them. Information derived from these activities is
useful in measuring change traffic and breakage as well as aspects of rework.

• Software Configuration Auditing
An independent examination of a work product or set of work products to assess
compliance with specifications, standards, contractual agreements, or other criteria.

• Software Version Control
Tracking of code or document modifications by each contributor for accountability and
conflict resolution.

• Software Release Management and Delivery
Distribution of a software configuration item outside the development activity; this
includes internal releases as well as distribution to operations.

These activities are documented in a Configuration Management (CM) plan that informs
everyone in the organization just how CM is carried out.

5 Operations Validation Stage
The Operations Validation Stage is the third stage in the Systems Engineering Life Cycle Model
and uses the outputs of the previous stage (Design and Development Stage) as its inputs. This is

NWSI 80-304 JULY 3, 2020

14

Activities

Develop Operational Test and Evaluation
Test (OT&E) Plan and Procedures

Train OT&E Personnel

Conduct OT&E Readiness Review

Install System in OT&E Environment

Conduct OT&E

Conduct Security Test & Evaluation

Conclude OT&E and Make Deployment
Recommendation

the stage in which the Government formally validates software system installation and operations
in the target operational environment. This includes validation that all requirements are fulfilled
in order for the Government to operate and maintain the system at all sites to which it will be
deployed. This is done by conducting an Operational Test and Evaluation (OT&E) of the System
and is the primary focus of the Operations Validation Stage in the SE life cycle depicted in
Figure 4 below.

Figure 4: Operational Validation Stage

OT&E is a formal evaluation of a software system that is conducted in an operational
environment and is performed after the successful completion of the System Acceptance Test
(SAT) or System Test (ST) and subsequent deployment of the software system at the designated
OT&E operational site(s). The subject matter presented in this section is covered in more detail
in NWS Instruction 80-307 Operational Test and Evaluation Process.

6 Production and Deployment Stage
The Production and Deployment Stage is where the software is produced in quantity, deployed,
and installed at all required operational field sites (beyond those sites involved in OT&E). The
Production and Deployment Stage is depicted below in Figure 5.

Inputs

System Acceptance Test (SAT) Report

Approved System Requirements
Specification (SRS)

Requirements Traceability Matrix
(RTM)

Approved Detailed Design Document

Test and Evaluation Master Plan
(TEMP)

Verified and accepted First Article
system

Training materials

Deployment Plan

Lifecycle Support Plan

Installation and Deployment Procedures

Program Management Responsibility
Transfer (PMRT)

Outputs

Operationally validated
system

OT&E Report

NWSI 80-304 JULY 3, 2020

15

Inputs

• Operationally validated
System

• Deployment and Lifecycle
Support Plan

• Program Management
Responsibility Transfer
Plan

Activities

• Conduct Production and Deployment Review
process to review and approve the system
production and deployment

• Ensure vendor/contractor production meets
specification and timeline

• Accept and deploy production systems

• Execute Program Management Responsibility
Transfer (PMRT) Plan

• Execute Lifecycle Support Plan

• Support commissioning and decommissioning
activities

Outputs

• Deploy production systems to all
specified locations

• Lifecycle support

• Commission the deployed systems
at all specified locations

Figure 5: Production and Deployment Stage

The activities for this stage are described in greater detail in NWS Instruction 80-301 Systems
Engineering Process and Life Cycle.

7 Operations and Support Stage
The Operations and Support Stage is where the software system is operated in its intended
environment to deliver its intended services, representing the “steady state” period that lasts until
the system is retired or replaced. Figure 6 below illustrates the inputs, activities and outputs of
this stage. The activities for this stage are described in greater detail in NWS Instruction 80-301
Systems Engineering Process and Life Cycle.

Inputs

• Deploy production Systems
to all specified locations

• Lifecycle Support

• Commission the Deployed
system at all specified
locations

Activities

• Establish and maintain all Operations and
Maintenance Procedures and Support

• Collect System Operational Data

• Plan and implement the required system upgrade

• Maintain Configuration Control of System

• Plan System Retirement

• Decommission System

Outputs

• Updated operations and
maintenance procedures

• Identified defects and
recommended enhancements

• Record of changes and upgrades

• System retirement plan

Figure 6: Operations and Support Stage

8 Roles and Responsibilities
This directive establishes the following authorities and responsibilities:

NWSI 80-304 JULY 3, 2020

16

8.1 NWS Headquarters (NWSHQ)

8.1.1 Office of Planning and Programming for Service Delivery (OPPSD)
The OPPSD will collaborate with other Portfolio Offices and the Office of the Chief Information
Officer (OCIO) to establish NWS policies and procedures for systems engineering. The OPPSD
will provide oversight and assessment on how the established NWS systems engineering policies
and procedures are applied to the NWS projects and systems. As requested and agreed, the
OPPSD will also provide the systems engineering support to the projects or systems at stage(s)
of life cycle process.

8.2 NWS Regional Headquarters (RQH) and NWS Regional Offices
Each Region and Office will use established systems engineering policies and procedures to their
projects and systems.

8.3 Project Management Offices (PMOs)
Each PMO is responsible for ensuring the systems engineering be conducted in accordance with
the established policies and procedures. If required, the PMO can request the exceptions of
certain NWS SE life cycle activities through NWS Chief Engineer and/or the OPPSD director for
approval.

8.4 System Owners
Each System Owner is responsible for ensuring the systems engineering be conducted through
entire life cycle in accordance with established policies and procedures.

9 References and Glossary
This policy directive is supported by the references and glossary of terms listed in Attachment 1.

NWSI 80-304 JULY 3, 2020

17

Attachment 1

REFERENCES AND GLOSSARY OF TERMS

References

National Weather Service Policy Directive 1-10, Managing the Provision of Environmental
Information
NAO 212-15: Management of Environmental Data and Information
NWS Policy Directive 10-1, NWS Requirements, Operations and Services Improvements
NWS Instruction 10-103, Operations and Services Improvement Process Implementation
NWS Policy Directive 80-1, Acquisition Program Management

NWS Instruction 80-3, Systems Engineering
NWS Instruction 80-301, Systems Engineering Process and Life Cycle
NWS Instruction 80-303, Systems Engineering for New System Development
NWS Instruction 80-305, Test and Evaluation
NWS Instruction 80-306, System Acceptance Test (SAT) Process
NWS Instruction 80-307, Operational Test and Evaluation (OT&E) Process
NWS Policy Directive 80-4, Science and Technology Planning and Programming
NWS Policy Directive 80-5, Science Review and Approval

NWS Policy Directive 60-7, Information Technology Security Policy
NOAA Administrative Order 212-13, Information Technology Security Management
NIST Special Publication 800-37, Guide for the Security Certification and Accreditation of
Federal Information Systems
NIST 800-53, Recommended Security Controls for Federal Information Systems
NIST 800-64, Revision 2, Security Considerations in the System Development Life Cycle
NIST 800-30, Risk Management Guide for Information Technology Systems

NWSI 80-304 JULY 3, 2020

18

Glossary
The following is a list of common terms and acronyms used within the Systems Engineering
industry. While many of these terms are not mentioned within the body of this document, they
are nonetheless important to understanding this instruction.
Acceptance criteria - The criteria that a software component, product, or system must satisfy in
order to be accepted by the system owner or other authorized acceptance authority.
Acquisition - The acquiring by contract with appropriated funds of supplies or services
(including construction) by and for the use of the Government through purchase or lease,
whether the supplies or services are already in existence or must be created, developed,
demonstrated, and evaluated
Analysis - Use of mathematical modeling and analytical techniques to predict the compliance of
a design to its requirements based on calculated data or data derived from lower system structure
end product validations.
Analysis of Alternatives (AoA) - A formal analysis method that compares alternative
approaches by estimating their ability to satisfy mission requirements through an effectiveness
analysis and by estimating their life-cycle costs through a cost analysis. The results of these two
analyses are used together to produce a cost effectiveness comparison that allows decision
makers to assess the relative value or potential programmatic returns of the alternatives.
Application - Software or systems products designed to fulfill specific needs.
Assumption - A condition that is taken to be true without proof or demonstration.
Baseline - A set of configuration items (hardware, software, documents) that has been formally
reviewed and agreed upon, that serves as the basis for further development, and that can be
changed only through formal change control procedures.
Code - Computer instructions and data definitions expressed in a development language or in a
form that is output by an assembler, compiler, or other translator.
Code Review -A meeting at which software code is presented to project personnel, managers,
users, or other functional areas for review, comment, or approval.
Component - One of the parts that make up a system. A component may be hardware, software,
or firmware and may be subdivided into other components.
Concept of Operations (ConOps) -The ConOps describes how the system will be operated
during the life-cycle phases to meet stakeholder expectations. It describes the system
characteristics from an operational perspective and helps facilitate an understanding of the
system goals. It stimulates the development of the requirements and architecture related to the
user elements of the system. It serves as the basis for subsequent definition documents and
provides the foundation for the long-range operational planning activities

NWSI 80-304 JULY 3, 2020

19

Configuration Control Board (CCB) - A group of people responsible for evaluating and
approving/disapproving proposed changes to configuration items, and for ensuring
implementation of approved changes.
Configuration item -An aggregate of hardware, software, or documentation components that are
designated for configuration management and treated as a single entity in the configuration
management process.
Configuration Management - A discipline that effectively controls and manages all
modifications to system components, product, or system.
Constraint - A restriction, limit, or regulation that limits a given course of action or inaction.
Critical Design Review (CDR) - A review that demonstrates that the maturity of the design is
appropriate to support proceeding with full-scale fabrication, assembly, integration, and test, and
that the technical effort is on track to complete system development and operations in order to
meet performance requirements within the identified cost and schedule constraints.
Deliverable -A work product that is identified in the Project Plan and is formally delivered to the
system owner and other project stakeholders for review and approval.
Dependency -A relationship of one task to another where the start or end date of the second task
is related to the start or end date of the first task.
Design - The process of defining the architecture, components, interfaces, and other
characteristics of a system, product, or component.
Design specification - A document that describes the design of a software component, product,
or system. Typical contents include architecture, control logic, data structures, input/output
formats, interface descriptions, and algorithms.
Hardware - Physical computer and other equipment used to process, store, or transmit computer
programs or data.
Hierarchy - A structure in which components are ranked into levels of subordination.
Integration Test - Verifies the system components are integrated and working as an application.
The technical development team performs this test to uncover errors that occur in the interactions
and interfaces between components.
Interface - A shared boundary between two functional units, defined by functional
characteristics, common physical interconnection characteristics, signal characteristics, or other
characteristics, as appropriate.
Interface requirement - A requirement that specifies an external item with which a software
product or system must interact, or that sets forth constraints on formats, timing, or other factors
caused by such an interaction.
Lifecycle - See Project Lifecycle.
Life-Cycle Cost - The total cost of ownership over the project’s or system’s life cycle from
design to decommissioning. The total of the direct, indirect, recurring, nonrecurring, and other

NWSI 80-304 JULY 3, 2020

20

related expenses incurred, or estimated to be incurred, in the design, development, verification,
production, deployment, operation, maintenance, support, and disposal of a project.
Maintenance - The process of supporting a software product or system after delivery to maintain
operational status, correct faults, improve performance or other attributes, or adapt to a changed
environment. Maintenance is performed by personnel having specified skill levels, using
prescribed procedures and resources, at each prescribed level of maintenance.
Metric - The result of a measurement taken over a period of time that communicates vital
information about the status or performance of a system, process, or activity.
Milestone - A scheduled event for which an individual or team is accountable and that is used to
measure progress.
Mission - A major activity required to accomplish an Agency goal or to effectively pursue a
scientific, technological, or engineering opportunity directly related to an Agency goal. Mission
needs are independent of any particular system or technological solution.
Module - A program unit that is discrete and identifiable with respect to compiling, combining
with other units, and loading. A logically separable part of a program.
Peer Review - Independent evaluation by internal or external subject matter experts who do not
have a vested interest in the work product under review. Peer reviews can be planned, focused
reviews conducted on selected work products by the producer’s peers to identify defects and
issues prior to that work product moving into a milestone review or approval cycle.
Platform - A specific computer and operating system on which a software product or system is
developed or operated.
Portability - The ease with which a software component, product, or system can be transferred
from one hardware or software environment to another.
Preliminary Design Review (PDR) - A review that demonstrates that the preliminary design
meets all system requirements with acceptable risk and within the cost and schedule constraints
and establishes the basis for proceeding with detailed design. It will show that the correct design
option has been selected, interfaces have been identified, and verification methods have been
described.
Procedure - A written description of a course of action to be taken to perform a given task.
Process - An ordered set of steps performed for a given purpose. Processes define or control the
development of the project work products. The use of processes will ensure a consistent
methodology across all platforms in producing the lifecycle deliverables.
Project - An undertaking of finite duration requiring concerted effort that is focused on
developing a specific software product or system.
Project lifecycle - Covers all activities conducted within the scope of an entire project, from
project startup to project closeout.
Project Manager - The individual with total responsibility for all activities of a project. The
project manager plans, directs, controls, administers, and regulates a project.

NWSI 80-304 JULY 3, 2020

21

Prototyping - A technique for developing and testing a preliminary version of the software
product (either as a whole or in modular units) in order to emulate functionality.
Quality assurance - A process designed to provide management with appropriate visibility into
the work products being produced and the systems engineering processes being used by the
project team.
Reference - A document(s) or other material that is useful in understanding more about an
activity.
Regression Test - Re-execution of specific test cases to ensure defects are fixed, find new
defects that may have been introduced, and confirm that module(s) are functioning properly.
Reliability - The ability of a software or system component to perform its required functions
under stated conditions for a specified period of time.
Requirement - A condition or capability needed by a system owner/user to solve a problem or
achieve an objective. A condition or capability that must be met or possessed by the software
product or system to satisfy a contract, standard, specification, or other formally imposed
documents.
Requirements analysis - The process of analyzing and understanding the scope and feasibility
of identified requirements; of developing a preliminary plan to arrive at a detailed definition of
system, hardware, or software requirements; and of crystallizing a preliminary system solution.
Requirements Specification - A work product deliverable that specifies the requirements for a
software product or system. Typically included are functional requirements, performance
requirements, and interface requirements. Describes in detail what will be delivered in the
product or system release.
Reusability - The degree to which a software module or other work product or system
component can be used in more than one computer program or software system.
Software - Computer programs, procedures, and associated documentation and data pertaining
to the operation of a software product or system.
Specification - A document that specifies in a complete, precise, verifiable manner the
requirements, design, behavior, and other characteristics of a software component, product, or
system.
Stage - A partition of the project lifecycle that divides a project into manageable pieces and
represents a meaningful and measurable set of related tasks that are performed to obtain specific
work products.
Stakeholder - An individual, group, or organization, who may affect, be affected by, or perceive
itself to be affected by a decision, activity, or outcome of a project.
Stakeholder Requirements - Requirements from various stakeholders that will govern the
project, including required system capabilities, function, and/or services; quality standards;
system constraints; and cost and schedule constraints. Stakeholder requirements may be
captured in the Stakeholder Requirements Specification.

NWSI 80-304 JULY 3, 2020

22

Standard - Mandatory requirements employed and enforced to prescribe a disciplined, uniform
approach to software and systems development and maintenance.
State Diagram - A diagram that shows the flow in the system in response to varying inputs.
Structured analysis - An analysis technique that uses a graphical language to build models of
software products or systems. The four basic features in structured analysis are data flow
diagrams, data dictionaries, procedure logic representations, and data store structuring
techniques.
System- 1) An integrated set of elements, subsystems, or assemblies that accomplish a define
objective. These elements include products (hardware, software, firmware), processes, people,
information, techniques, facilities, services, and other support elements. 2) A combination of
interacting elements organized to achieve one or more stated purpose.
Systems Analysis - The analytical process by which a need is transformed into a realized,
definitive product, able to support compatibility with all physical and functional requirements
and support the operational scenarios in terms of reliability, maintainability, supportability,
serviceability, and disposability, while maintaining performance and affordability.
System Architecture - The arrangement of elements and subsystems and the allocation of
functions to them to meet system requirements.
System Design Document - A work product deliverable that provides a technical description of
the solution to meet requirements.
Systems Engineer -An engineer trained and experienced in the field of systems engineering.
Systems Engineering Processes - A logical, systematic set of processes used to accomplish
systems engineering tasks.
System of Interest - The system whose life cycle is under consideration.
System & Standards Test – Verifies functional business requirements, business processes, data
flows and other system criteria are met.
System Test - Testing of software or hardware is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified requirements.
Task - The smallest unit of work subject to management accountability. A task is a well-defined
work assignment for one or more project team members. Related tasks are usually grouped to
form activities. A task is the lowest level of work division typically included in the Project Plan
and Work Breakdown Structure.
Test - The use of system, subsystem, or component operation to obtain detailed data to verify
performance or to provide sufficient information to verify performance through further analysis.
Testing is the detailed quantifying method of verification and is ultimately required in order to
verify the system design.
Testing - An activity in which a software or system component or product is executed under
specified conditions, the results are observed and recorded, and an evaluation is made.

NWSI 80-304 JULY 3, 2020

23

Traceability - The degree to which a relationship can be established between two or more
products of the development process, especially products having a predecessor-successor
relationship to one another.
Transition - The act of delivery or moving of a product from the location where the product has
been implemented or integrated, as well as verified and validated, to a customer. This act can
include packaging, handling, storing, moving, transporting, installing, and sustainment activities.
Unit - A separately testable element specified in the design of a computer system or software
component.
Unit testing - Testing of individual hardware or software units or groups of related units. The
isolated testing of each flowpath of code with each unit.
User interface - An interface that enables information to be passed between a user and hardware
or software components of a computer system.
User manual - A document that presents the information necessary to use a software product or
system to obtain desired results. Typically described are product or component capabilities,
limitations, options, permitted inputs, expected outputs, possible error messages, and special
instructions.
Validation - The process of evaluating software or systems at the end of the development
process to assure compliance with established software and system requirements.
Verification - The process of evaluating a software product or system to determine whether or
not the work products of a stage of the project lifecycle fulfill the requirements established
during the previous stage.
Walkthrough - An analysis technique in which a team of subject matter experts review a
segment of code, documentation, or other work product, ask questions, and make comments
about possible errors, violation of development standards, and other problems.

NWSI 80-304 JULY 3, 2020

A-1

Appendix A - Software Development Plan – Sample Outline
The Software Development Plan describes the developer’s plan for conducting a software
development effort and gives managers the tools for monitoring the associated processes. It will
detail methods and approaches to be followed for all software development activities. It
describes all processes and provides guidance for the development team. It will reference
standards, methods, tools, actions, reuse strategy, and security responsibilities. The following is
a sample outline of a SDP intended for use within the DoD and which can be found at
http://www.acqnotes.com/acqnote/careerfields/software-development-plan

• Plan introduction and overview.
o Purpose, scope, and objectives.
o Assumptions and constraints.

• Relationship to other program plans.
• Referenced documents.
• Identification of all software and software products to which the SDP applies.
• Definition of terms and acronyms.
• System overview, including system and software architecture.
• Overview of required work, including:

o Requirements and constraints on the system and software to be developed.
o Software products and related deliverables.
o Requirements and constraints on project documentation.
o The program/acquisition strategy, resources, and schedules
o Additional requirements and constraints such as on project security, privacy,

methods, standards, interdependencies in hardware and software development.
o Known software-specific risks.

• Charter (Project organization and resources)
• Software-related development processes, approaches, methods, and/or standards

including:
o Overall development methodology.
o Software Development Standards
o Software CM Standards
o Establishing the system/software engineering environment and controls

 Software Versioning Methodology
 Software Types/Categories

• Operational Software (Reusable software products
and Commercial off-the-Shelf (COTS))

• Test Software
• Support Equipment Software

o Prototyping and simulations.
o System requirements analysis and design, including requirements definition and

allocation
 Functional Requirements
 Operational Requirements

http://www.acqnotes.com/acqnote/careerfields/software-development-plan

NWSI 80-304 JULY 3, 2020

 Life-Cycle Analysis
• Computer resources utilization and reserve capacity/growth

management.
o Software requirements analysis.

 Handling of critical requirements (such as safety, security, and
information assurance).

o Software preliminary and detailed design.
o Software unit integration and testing.
o Software component integration and testing.

• Supporting processes and information, including:
o Software risk management.
o Approach to requirements traceability.

A-2

Appendix B - Digital Services Playbook
The Digital Services Playbook Summary describes thirteen best practices for addressing several
key aspects of developing software applications. These described "plays" identify approaches
for establishing:

1) clear scope,
2) productive customer experience,
3) unified and simple system layout,
4) process for fast-paced software development,
5) contracts and budget to support modular delivery,
6) life-cycle accountability,
7) experienced government and contract implementation teams,
8) process and environment for utilizing modern technology,
9) flexible infrastructure and platform environments,
10) automation,
11) security through reusable processes,
12) the usage of data to derive value and
13) a path for utilizing open technology.

The beneficial methods found within the Digital Services Playbook will help to reduce cost and
time-to-deployment for systems of all sizes and purpose. More details about each of these plays
can be found at https://playbook.cio.gov/

“Digital Services” refers to “the delivery of digital information (data or content) and
transactional services (e.g., online forms, benefits applications) across a variety of platforms,
devices, and delivery mechanisms (e.g., websites, mobile applications, and social media).”
Digital services may be delivered to internal customers, external customers, or both.

(Citation)Digital Services Advisory Group, Federal Chief Information Officers Council, and
Federal Web Managers Council, "Digital Services Governance Recommendations", Retrieved
from https://www.whitehouse.gov/digitalgov/digital-services-governance-
recommendations#introduction

B-1

https://playbook.cio.gov/
https://www.whitehouse.gov/digitalgov/digital-services-governance-recommendations#introduction
https://www.whitehouse.gov/digitalgov/digital-services-governance-recommendations#introduction

	Software Development
	1 Introduction
	2 Overview of Engineering Life Cycle Approach
	Figure 1: NWS Life Cycle Model
	3 Need and Definition Stage
	Figure 2: Need and Definition Stage
	4 Design and Development Stage
	Figure 3: Design and Development Stage
	4.1 Perform Software Development
	The traditional model is not recommended for most NWS software development projects.
	4.1.1 Iterative Model
	4.1.1.1 Initiation
	4.1.1.2 Analysis
	4.1.1.3 Design
	4.1.1.4 Implementation
	4.1.1.5 Acceptance
	4.1.2 Traditional Method
	4.1.2.1 Initiation
	4.1.2.2 Analysis
	4.1.2.3 Design
	4.1.2.4 Implementation
	4.1.2.5 Software Versioning
	4.2 Software Configuration Management
	 Management of the SCM Process
	 Software configuration identification
	 Software Configuration Control
	 Software Configuration Auditing
	 Software Version Control
	 Software Release Management and Delivery
	5 Operations Validation Stage
	Figure 4: Operational Validation Stage
	6 Production and Deployment Stage
	Figure 5: Production and Deployment Stage
	7 Operations and Support Stage
	Figure 6: Operations and Support Stage
	8 Roles and Responsibilities
	8.1 NWS Headquarters (NWSHQ)
	8.1.1 Office of Planning and Programming for Service Delivery (OPPSD)
	8.2 NWS Regional Headquarters (RQH) and NWS Regional Offices
	8.3 Project Management Offices (PMOs)
	8.4 System Owners
	9 References and Glossary
	Attachment 1
	Glossary
	Appendix A - Software Development Plan – Sample Outline
	NWSI 80-304 JULY 3, 2020
	Appendix B - Digital Services Playbook

