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1. INTRODUCTION

This stug was undertaken to answer three
guestions: 1) Is it possiblgiven the chaging
nature of the Eta model, to develop an
objective operational temperature forecast
based at least in part on that model? 2) What
is the relative skill of Eta model-based
predictors versus Nested Grid Model (NGM)
model-based predictors? 3) Does stratification
of the data into cold-air damngrand non-
cold-air dammig days sgnificantly improve
forecast skill? These questions were
addressed Y developig maximum
temperature equations to predicyaame and
day two maximum temperatures at the
Columbia, South Carolina National Weather
Service Forecast Office (CAE).

Multiple linear reression was used on a
limited number of temperature related
variables from the 0000 UTC run of the Eta
model and the (NGM) to develop equations to
predict dg one and da two maximum

temperatures. Records in the dependent data

set were stratified yo whether the
correspondig day was a cold-air dammgn
(CAD) day. Three ypes of local equations
(LOC) were developed: 1) a maximum
temperature equation forgane or dg two
when CAD was occurrgy 2) maximum
temperature equations for ydeone when
CAD was not occurrig; 3) maximum
temperature equations fonydavo when CAD

was not occurrig. For 2) and 3), a separate
LOC was developed for the hot season, the
cool season, and the two transition seasons.
One CAD LOC was developed for the entire
year. This resulted in nine separate equations.
All LOC were evolutionay in nature. Their
forecasts were verified from Aust 21, 1996
through November 17, 1997gainst NGM
and Aviation Model Output Statistics (FWC
and FAN, respectivg) 0000 UTC dg one
and dg two maximum temperature forecasts.
Seasons were combined for purposes of
verification.

2. DATA

Data were obtained from the Office of
Systems Operations server in Gridded Bynar
Data format and examined with the Personal
Computer Gridded Interactive Dispgland
Diagnostic §stem (PCGRIDDS) and the
General Meteorolgical Packge Analsis and
Renderiig Pragram after convertig the data
into PCGRIDDS and General Meteorgical
Package (GEMPAK) formats. Four
parameters were chosen as potential
independent variables from the Eta model: 1)
1000 to 850 mb thickness (m), 2) 1000 mb
temperature?C), 3) BO15 (surface to surface
pressure minus 30 mb) boundary layer
temperature (C), and 4) 850 mb relative
humidity. Four corresponding parameters
were chosen as potential independent
variables from the NGM model: 1) 1000 to



850 mb thickness (m), 2) 1000 mb
temperature 9C), 3) S982 (sigma layer 982)
boundary layer temperatureQ), and 4) 850
mb relative humidity. Values were from the
0000 UTC run of each model for the 24 hour
(day one) and 48 hour (day two) forecast
projections. In addition, the 0600 UTC day
one observed temperature was selected as a
potential independent variable. The
dependent variable was the maximum
temperature between 1200 and 0000 UTC

(°F).

Data were stratified into two groups. The first
group was comprised of days that could be
classified as cold-air damming (CAD) days.
CAD days were defined as days when there
was an east or northeast flow at the surface, a
southeast to southwest flow just above the
surface layer, overcast skies throughout the
period from 1200 to 0000 UTC, at least a
trace of rain during that period, and a
temperature difference of no greater than
12°F between the 0600 UTC temperature and
the maximum temperature between 1200 and
0000 UTC.

The second group was comprised of all other
days. CAD days occur relatively infrequently
at CAE, so data from CAD days were
collected from five sites including CAE. The
other four sites were the National Weather
Service Office at Greer, SC; and private
contract offices at Charlotte, NC; Augusta ,
GA; and Florence, SC. This was done to
increase the number of records in the
dependent data set. The pooling of data in
this fashion did render the records in the CAD
dependent data set less than completely
independent of each other. Only values from
day one were retained for the CAD data set
(even though the CAD equation was used for
day one and day two), and data were collected
without regard to season.

On non-CAD days, data were collected on
nearly a daily basis for CAE only. Since
consecutive days are not meteorologically
independent of each other, this also had the
effect of rendering the records in the non-
CAD dependent data set less than completely
independent of each other.

In the case of the data from the non-CAD
days, data were further divided by season.
The cool season data were from December 15
through March 14, the first transitional season
data were from March 15 through May 14, the
hot season data were from May 15 through
September 14, and the second transitional
season data were from September 15 through
December 14.

This meant there were nine sets of data that
would result in nine local equations (LOC).
Eight sets of data were associated with non-
CAD days, and one set of data was associated
with CAD days. For the non-CAD days, there
was a set of data for each day one and day two
of each season. For the CAD days, there was
a set of data for day one without regard to the
season.

Data used to derive the LOC were collected
from January 15, 1996 through October 15,
1997. Data used to verify the LOC were from
August 21, 1996 through November 17, 1997.
For each equation, data used for verification
were not included in the dependent data set
used for equation development. As the size of
the data sets grew, equations were re-derived
incorporating previously independent data
into the dependent data set.

During the course of the study, modelers at
the National Center for Environmental

Prediction (NCEP) made changes to the Eta
model. Itwas noticed (no evidence presented



here) that the changes effected the Eta-derived
thermal variables used by the study.
Specifically, values of Eta-derived thermal
variables were lower for similar maximum
temperatures at the end of the study than at
the beginning of the study. The NGM,
however, has been a static model for some
time. The static nature of the NGM was used
to make adjustments to Eta output so that pre-
modification and post-modification Eta data
would not be precluded from use in the same
dependent data set.

Since the NGM is a static model, it was
assumed that any change to the difference
between corresponding Eta and NGM
parameters from one year to the next was due
to a change in the Eta parameter. Therefore,
if the change to the former difference was
computed, it could be added to the Eta
parameter from the earlier year to account for
the latter change.

The difference between the value of an Eta
parameter and the corresponding NGM
parameter was regressed on observed
maximum temperature for a season. The
same was done for the same season from the
previous year. The difference between the
resultant equations was itself an equation (the
adjustment equation). That equation was
comprised of 1) a predictor variable (observed
maximum temperature) with an associated
coefficient and 2) a constant which estimated
the change in the difference between the Eta
and NGM variables when the maximum
temperature was°@.

If the change in the difference between the Eta
and NGM parameters was related to
maximum temperature, then the coefficient
from the adjustment equation should have
been significantly different from zero. If the
coefficient was not significantly different

from zero, but the constant was, then the
indication was of a significant change in the
difference between the Eta and NGM
parameters over the course of a year that was
not related to maximum temperature.

Maximum temperatures were used with the
adjustment equation to compute adjustments
to Eta parameter values from the earlier
season, without regard to whether the
coefficient was significantly different from
zero. Adjustments were made to the Eta
thermal parameters from the eight non-CAD
data sets. Mainly for the purpose of
conserving time and effort, no adjustments
were made to the CAD data set, and no
adjustments were made to 850 mb relative
humidity values.

Before making the adjustment to each Eta

parameter, the study assessed qualitatively the
two mean Eta/NGM temperature differences

and the resultant regression equations. If it
was determined that they were not similar,

then an adjustment was made to the earlier
season Eta data. In fact, adjustments were
made to all earlier season Eta thermal data
(non-CAD cases) except for the second

transitional season day one and day two 1000
mb and BO15 temperatures.

3. EQUATION DERIVATION

The study used a commercially available
statistical software package to perform
variable selection and multiple linear
regression to arrive at LOC. A complete
explanation of these processes can be found in
Draper and Smith (1981). A less rigorous but
more meteorologically oriented explanation of
the regression process can be found in Wilks
(1995).

The variable selection process was designed



to achieve two goals. The first goal was to At a minimum, 45 records were required
maximize the amount of variance in the before a LOC was derived. Still, the original
dependent variable, observed maximum nine LOC were derived from small numbers
temperature, explained by the independent of records. Therefore, they were rederived as
variables. The second goal was to minimize the number of records increased. Each of the
the amount of bias in the resultant maximum nine LOC was rederived at least twice during
temperature forecasts. the course of the study. Only the latest LOC

are given below. They compute the forecast
Since there was some dependence between the maximum temperature itF.
records in all of the dependent data sets, no
equation (that did not have to account for a Cold Season:
quadratic feature in the residuals) was
retained as an LOC if any of the independent Day One:
variables had associated p-values in excess of 47.51 + 1.538(C) - .03110(D) ()
.01. P-values can range from zero to one, and
with regard to independent variables, those Day Two:
with better predictive value have lower p- 47.84 + 1.426(B) (2)
values. In some cases, the residuals from the
equations determined by the variable selection First Transitional Season:
process did not behave in a way consistent
with the assumptions of multiple linear  Day One:
regression. Specifically, they either did not [-15.71 + .1801(A) - .005323(H)] (3)
exhibit homoscedasticity (equal variance
along the range of predicted values) or a Day Two:
normal distribution. When either was the exp[4.010 +.01897(C) - .0009042(H)] (4)
case, a transformation of the dependent
variable was required to render the residuals Warm Season:
homoscedastic and normally distributed. In a
couple of instances (the second transitional Day One:
season equations), a quadratic nature to the 38.81 +.7312(B) + 1.040(F) (5)
residuals necessitated that higher order terms
of the independent variables be included in Day Two:
the equations. In the second transitional [113.9 + 378.2(B) + 137.0(F) - 241.9(&3]
season LOC (day one and day two), some of (6)
the terms had associated p-values in excess of
.01.

Second Transitional Season:

Derived LOC always explained greater than Day One:

.80 of the variance in the dependent variable, [155720 - 72.03(C) - 6688(G) + 1206|G
usually explained greater than .90 of the 1192(G@) - 1387(C)(G)}? (7)
variance in the dependent variable, and rarely

. . .~ Day Two:
lained greater than .95 of th
e ;gingéﬁ?farﬁa;g otthe vanance I 48’55 +.9842(C) - .008511(G) - .02558(C
' 01335(C) + .05813(C)(G) ®)



Cold Air Damming:

Day One or Two:
11.62 +.7812(G) + .6234(l) 9

where:

A = Eta 1000 to 850 mb thickness (m*10)
B = Eta 1000 mb temperaturgQ)

C = Eta BO15 temperaturéQ)

D = Eta 850 mb relative humidity (%)

E = NGM 1000 to 850 mb thickness (m*10)
F = NGM 1000 mb temperaturéQ)

G = NGM S982 temperaturéQ)

H = NGM 850 mb relative humidity (%)

| = 0600 UTC observed temperatufé)

4. VERIFICATION

As stated previously, independent data from
the period August 21, 1996 through
November 17, 1997 were used for
verification. Occasionally, a LOC, an FWC,
and/or FAN were not run or their forecasts
were not recorded by the study. There were
316 LOC forecasts for day one (22 CAD days
and 294 non-CAD days) and 301 LOC
forecasts for day two (22 CAD days and 279
non-CAD days). There were 316 FWC
forecasts for day one (22 CAD days and 294
non-CAD days) and 303 FWC forecasts for
day two (21 CAD days and 282 non-CAD
days). There were 319 FAN forecasts for day
one (23 CAD days and 296 non-CAD days)
and 306 FAN forecasts for day two (22 CAD
days and 284 non-CAD days).

It is reemphasized that the LOC were
rederived during the course of the verification
process, but forecast maximum temperatures
were not recomputed using updated equations.
With regard to the CAD LOC equation, the
verification process presents the LOC
optimally. Consider that the forecaster will

always be faced with the decision of whether
to use the standard LOC or the CAD LOC.

For purposes of verification, the study

assumed that the forecaster would always
make the correct decision.

Table 1 shows the variance in the observed
maximum temperatures explained by the
forecasts of the LOC, the FWC, and the FAN.
This is done for day one forecasts, day two
forecasts, and both days combined across non-
CAD days, CAD days, and all days. For non-
CAD days, variance explained by the
forecasts of each of the equations is
comparable. The same is true for all days.
However, the LOC explain considerably more
variance on CAD days than either the FWC or
the FAN.

Table 2 shows the mean absolute error (MAE)
of the LOC, the FWC, and the FAN for non-
cold air damming days, CAD days, and all
days across day one forecasts, day two
forecasts and both day forecasts combined.
Table 3 shows the biases in a similar manner.

For the MAEs and biases, a p-value of .05
corresponds to the 95 percent confidence
level, and a p-value of .01 corresponds to the
99 percent confidence level. For non-CAD
days, the LOC MAEs are not significantly
less than the FWC MAEs at a p-value of .05
or less. The LOC MAEs are significantly less
than the FAN MAEs at a p-value of .0175
(day one), zero (day two), and zero (both days
combined).

For CAD days, the MAEs of the LOC are
significantly less than those of either the FWC
or the FAN at p-values at or close to zero
(zero for day one, day two, and both days
combined versus the FWC; .006 for day one,
.0006 for day two, and zero for both days
combined versus the FAN).



For all days, the MAEs of the LOC are again
significantly less than those of either the FWC
or the FAN at p-values at or close to zero
(.0009 for day one, .0021 for day two, and
zero for both days combined versus the FWC,;
.0016 for day one, and zero for day two and
both days combined versus the FAN).

From Table 3, the only LOC bias that was
significantly different from zero was the bias
for CAD days across both days forecasts (p-
value of .0157). All of the biases of the FWC
and the FAN were significantly different from
zero (p-value of zero in every case).

5. CONCLUSIONS

The LOC were developed from a
comparatively small (both in terms of the
number of potential independent variables and
the number of records) data set. They were
evolutionary in nature, and assuming the
equations generally improved over the course
of the study, results of verification are not
results of verification of the best LOC
exclusively. The records used to develop the
LOC were not completely independent of
each other. Nonetheless, the LOC
outperformed the FAN over CAD days and
non-CAD days. The LOC were competitive
with the FWC on non-CAD days, and they
outperformed the FWC on CAD days to the
extent that when one compared the LOC to
the FWC over all days, the LOC outperformed
the FWC. Again, it should be said that the
study assumed the correct LOC (CAD or non-
CAD) would be used for purposes of
verification. However, as NCEP’s Eta model
has been improving, it has been making CAD
episodes easier to forecast. The results of this
study’s verification are therefore not nearly as
idealistic as they would have been several
years ago.

Given the results, it appears that it is possible
to use Eta based parameters in a MOS
technique even though the Eta model is
evolutionary in nature. There is no direct
proof presented here that the technique
employed in this study helped to do this.

An inspection of the LOC shows that most of
the variables retained were Eta parameters. If
one assumes that the technique used to modify
the Eta variables was of some use, then one is
forced to discount the presence of the NGM
850 mb relative humidity parameters in the
two first transitional season equations and the
presence of the NGM S982 temperature
parameter in the CAD equation when
evaluating whether Eta-based parameters do
a better job than NGM-based parameters.
This is because no adjustments were made to
the Eta 850 mb relative humidity parameter or
any Eta parameters in the CAD cases, and so
they were not afforded the possible benefit of
the modification technique.  With this in
mind, ten out of 15 parameters retained were
from the Eta model, four were from the NGM,
and one was an observed value. It is not
demonstrated that Eta-based parameters do a
better job than NGM-based parameters in a
MOS technique, but the indication is so.

Finally, it appears that something is gained by
stratifying cases so that separate equations can
be developed for relatively rare events that
standard MOS equations do not forecast well,
at least with regards to maximum temperature.
Even though there is still some drawback in
having to know in advance when to use such
equations, the benefit of having them quite
likely outweighs that constraint.
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Table 1: Variance in observed maximum temperatures at CAE explained by the day one, day
two, and combined maximum temperature forecasts from the LOC, the FWC, and the FAN

eguations.

Non-CAD Days CAD Days All Days
LOC FWC FAN LOC FWC FAN LOC FWC FAN
Day One 9243 9378 .9229 8741 .6921 .6536 .9289 .9206 .9085
Day Two 9239 .9234 .8941 .8030 .6308 .6329 9272 .9061 .8765
Combined .9240 .9307 .9086 .8362 .6609 .6378 9279 .9134 .8926

Table 2: Mean absolute error (MAE) of the CAE day one, day two, and combined maximum
temperature forecasts from the LOC, the FWC, and the FAN equdtins

Non-CAD Days CAD Days All Days
LOC FWC FAN LOC FWC FAN LOC FWC FAN
Day One 256 271 2.93 209 7.64 461 253 3.06 3.05
Day Two 253 275 356 263 7.62 5.82 253 3.09 3.72
Combined 255 273 3.24 236 7.63 5.20 253 3.07 3.38




Table 3: Bias of the CAE day one, day two, and combined maximum temperature forecasts

from the LOC, the FWC, and the FAN eguatio‘f%M

Non-CAD Days CAD Days All Days
LOC FWC FAN LOC FWC FAN LOC FWC FAN
Day One -0.13 1.29 -151 0.82 7.45 4.00 -0.06 1.72 -1.12
Day Two 0.04 122 -1.70 136 7.33 4.82 0.14 1.64 -1.23
Combined -0.05 125 -1.61 1.09 7.40 4.40 0.03 168 -1.17




