New Warm Season AVN-based MOS PoP Forecasts

CAFTI - September 6, 2000

Mark S. Antolik
NOAA/NWS/OSD/ Techniques Development Laboratory
Silver Spring, MD

(301) 713-1065 ext. 170 email: mark.antolik@noaa.gov

The New AVN-Based MOS PoP System

What's new?

- MORE STATIONS:
 - 1060 Forecast Sites Add HI, PR
- MORE FORECASTS, CONSISTENTLY(!):
 - Available at projections of 12-72 hours Consistency enforced between 6- and 12-h PoP
- BETTER RESOLUTION:
 - Predictor fields on 95.25 km grid
 Predictor fields available at 3-h timesteps
 Predictor fields available beyond 48-h projection
 - * No extrapolative forecasts, as with NGM MOS!

CHALLENGE TO NEW MOS DEVELOPMENT:

RAPIDLY EVOLVING NWP MODELS AND OBSERVATION PLATFORMS

Make for:

- 1. SHORT, UNREPRESENTATIVE DATA SAMPLES
- 2. DIFFICULT COLLECTION OF APPROPRIATE PREDICTAND DATA

New observing systems: (ASOS, WSR-88D) (Co-Op, Mesonets)

But "old" predictands

The New AVN MOS PoP System

To ensure that model changes and small sample size had minimal impact on PoP performance, we relied upon...

- 1. Improved AVN model realism better model = better statistical system
- 2. Consistent archive grid used throughout smoothing of fine-scale detail constant grid length for grid-sensitive calculations
- 3. Enlarged geographic regions larger data pools help to stabilize equations
- 4. Use of "robust" predictor variables no boundary layer variables variables presumed immune to known model changes

The New AVN-Based MOS PoP System

System Development; AVN vs. NGM

<u>NGM</u>

<u>AVN</u>

Predictand Data:

SAO; 399 Sites CONUS 27 Sites AK

5yr CONUS

ASOS; 540 Sites CONUS, HI, PR 27 Sites AK

3yr CONUS

3yr AK

Sample:

8yr AK 25 CONUS; 8 AK

11 CONUS; 4 AK

Predictors:

Regions:

NGM Basic Fields NGM Derived Fields NGM Grid Binaries Geoclimatic Variables

AVN Basic Fields AVN Derived Fields AVN Grid Binaries Geoclimatic Variables

Regional Verification

Warm Season PoP (CONUS)

Warm Season PoP (CONUS)

% Improvement over NGM MOS; Apr-July, 2000

Warm Season PoP (Northeast)

Warm Season PoP (Southeast)

Warm Season PoP (Northcentral)

Warm Season PoP (Southcentral)

Warm Season PoP (Northwest)

Warm Season PoP (Southwest)

Warm Season PoP (Alaska)

Warm-Season AVN MOS PoP Performance

A Summary

 AVN MOS PoP outperforms NGM MOS in all regions at most every projection.

Overall 2-5% Improvement in P-score, Apr- July, 2000

Regional variations exist.

Diurnal variations in dry regions: SW,SE

AVN Improvements greatest in NW; Smallest in NE, Alaska (Summer 2000?) (Data?)