NOAA – National Weather Service/OHD

Science Infusion and Software Engineering Process Group (SISEPG) – C Programming Peer Review Checklist

C Programming Standards and Guidelines Peer Review Checklist
Last Updated: Monday, August 13, 2007
	Reviewer's Name:
	
	Peer Review Date:
	

	Project Name:
	
	Project ID:
	

	
	
	Enter if applicable
	

	Developer’s Name:
	
	Project Lead:
	

	Review Files & Source code
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Code Approved
	

The following check list is to be used in the assessment of C source code during a peer review. Items which represent the code being reviewed should be checked.
7
1. General Programming Standards and Guidelines
Refer to the OHD General Programming Standards and Guidelines Peer Review Checklist to assess the adherence to the OHD General Programming Standards and Guidelines
2. C Programming Standards

2.1 Readability and Maintainability

The programmer makes consistent use of indentation.

The programmer makes consistent use of braces.
2.2 Include Files

Include files are listed immediately after the file documentation block.

The ‘<’ and ‘>’ symbols are used to include system header files. The system
header files are listed in alphabetical order.

Double quotation is used for the inclusion of all non-system header files. The non-
system header files are listed in alphabetical order.

Absolute or relative paths are not used in the #include to point to header file
locations.

Header files contain preprocessor directives preventing multiple inclusions.
2.3 Variable and Function Scope

Global variables are used sparingly.
2.4 Variable Declaration, Initialization, and Qualifiers

Variable names with leading and/or trailing underscores are not used.

The names of constants defined by #define, enumerated constants, and constants
defined with a specific data type are in all CAPITAL letters.

Variables names which differ only by case are not used.

Variable names do not conflict with standard library function names.

Variable names are descriptive.

A consistent format for the naming of variables is used. Words in the names of local variables are distinguished either by separating them by underscores or by using camel case with the leading letter of the variable in lower case.

The names of variables of user-defined types be in camel case with the first letter capitalized. Underscores are not used.

Pointers are initialized to NULL.

Pointers are tested for NULL before being referenced.

The “const” qualifier is used for variables whose value should not be modified.

The “static” qualifier is applied to all file scope variables and functions whose use
is local to a single file.

Static variables are initialized when they are declared.

Local arrays which are initialized using an initializer list are made static. They are
made const if their contents are not to be modified.

Constants are declared in header files.

Values are not hard coded (except 0,1 and sometimes 2 for math computations).

2.5 Pointers and Dynamic Memory

Dynamically allocated memory is deallocated when no longer needed.

Functions do not return pointers to non-static stack dynamic variables.

Large arrays are dynamically allocated on the heap.
2.6 Functions

A consistent format for the naming of functions is used. Words in function names are distinguished either by separating them by underscores or by using camel case with the leading letter of the function name in lower case.

Function prototypes are declared in header files which are included in the source
modules that call the functions.

The arguments specified in function prototypes are associated with variable
names. The variable names match the variable names in the function definitions.

Functions used only in the source module they are created in are preceded by the
“static” keyword. They do not have prototypes in header files.
____ The return types of functions are explicitly stated.

Standard C Library routines are used where appropriate.

2.7 Portability

Non-portable code is avoided.

The code does not assume that data are stored in a particular way with respect to
word boundaries in memory.
3. C Programming Guidelines

3.1 File Organization

The names of C source files which belong to a common library or an executable
have a common prefix.
3.2 Comments

Block comments, one-line comments and inline comments are used appropriately.

A blank line is placed before and after a block comment or a one-line comment to separate it from the surrounding source code.

3.3 Variable Declaration, Initialization, and Qualifiers

Loop index variable names are short.

Pointer variables are named in a consistent fashion.
3.4 User Defined Types

Enumerations are used to group logically-related constants.

Macros are used judiciously.

Parentheses are used in macros to ensure correct evaluation order.

Structures are used to reduce the number of function calling arguments.

3.5 Pointers and Dynamic Memory

Pointers are used as arguments to functions in place of passing by value large
user-defined types or structures.
3.6 Functions

Functions are “inlined” if they are small and called many times.

The number of library function calls is limited in large loops.

Embedded statements are avoided, minimizing the possibility of side effects.
3.7 Program Control

Unnecessary code is avoided in loops.

The number of loop counters is kept to a minimum.

Loops are combined when possible to reduce the total loop overhead costs.

Logical tests are optimized by performing the fastest and most capable test first.

Non-Boolean variables are tested against an explicit value.

The “goto” statement is used sparingly.
3.8 Portability

Machine-independent code is organized into separate files from machine-
dependent code.

Big Endian and Little Endian issues are accommodated.

Machine-dependent assumptions are not made.

Explicit casting is used.

At least one digit on either side of the decimal point is used for floating point
variables.

Hexadecimal variables are started with 0x and use uppercase for A-F.

3.9 C Program Performance

Frequently used variables are qualified with the “register” keyword.

Multiple char variables are used to store Boolean values rather than using the bits
in a byte to represent Boolean flags.

The memset C library routine is used to initialize large areas of memory.

The memcpy C library routine is used to copy large areas of memory.

Frequently read files or database tables are read once and buffered in memory.

When possible the form x++ is used rather than x=x+1 or x+=1. Also, the form
x— is used rather than x=x-1 or x-=1.

The multiplication of integer variables by powers of 2 is done with left shifts.

The division of integer variables by powers of 2 is done with right shifts.

Sorting and searching large amounts of data is done using appropriate and
efficient techniques.

Repetitive computations are reduced by doing them once and saving the results in
temporary variables for future access.
4. Reviewer’s Comments:
6

