

4th HEFS workshop, 09/19/2013

Seminar C: results from the scientific validation of the Hydrologic Ensemble Forecast Service (HEFSv1)

James Brown

james.brown@hydrosolved.com

Contents

- 1. Overview of phased evaluation
- 2. Phase I: frozen GFS (medium)
- 3. Phase III: latest GEFS (medium)
- 4. Phase II: GEFS+CFSv2+CLIM (long)
- 5. Issues, gaps and recommendations

1. Overview of the phased evaluation of the HEFSv1

Motivation and scope

What it aimed to do

- Test critical features and screen for bugs/issues
- Demonstrate unbiasedness and skillfulness
- Provide guidance on expected quality
- Support early field applications (e.g. NYCDEP)

What it did not aim not do

- Benchmark HEFS against operational forecasts
- Cover a broad range of basins and use cases
- Provide guidance on calibration of HEFS

Three initial phases

For completion by the end of 2013

Phase I: medium-range (1-14 days), GFS (discontinued)

- Selected basins in four RFCs (AB, CB, CN, MA)
- Report available now (<u>hyperlink</u>)

Phase II: long-range (1-330 days), GEFS+CFSv2+CLIM

- Selected basins in MA and NE (in support of NYCDEP)
- Report on track for 30th September 2013

Phase III: medium-range, GEFS (as in Phase I)

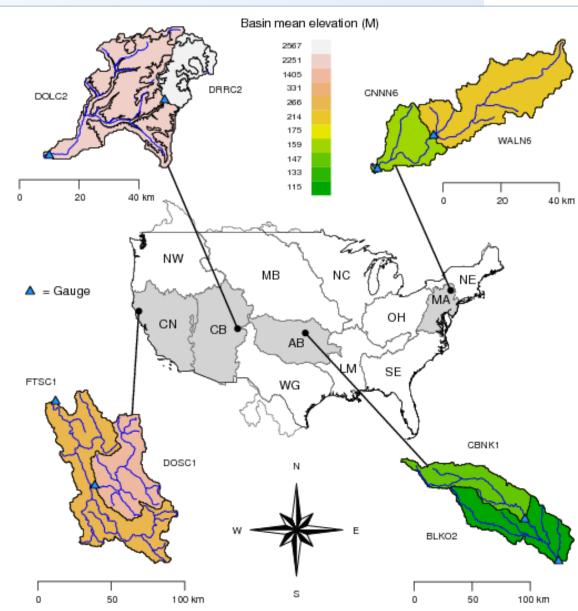
- Same design as Phase I, to establish gain from GEFS
- Report due 31st December 2013

2. Phase I: medium-range with frozen GFS

Phase I basins

Basins

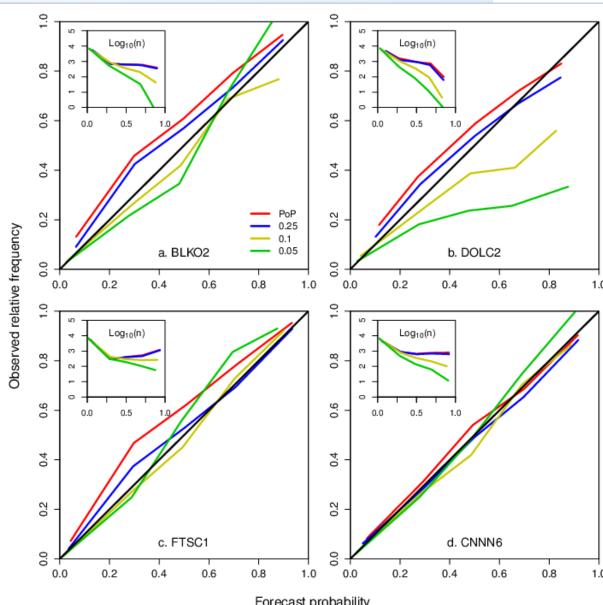
- Four RFCs
- Hindcasts: 1979-1999
- Upper/lower pairing
- USGS gauge at the outlet of each basin
- Relatively small basins (largest 2000 sq. miles)
- Low elevations in AB and MA
- Higher elevations in CB and CN
- CB and CN have MAT/MAP sub-basins



MEFP-GFS precipitation forecasts

Precipitation reliable

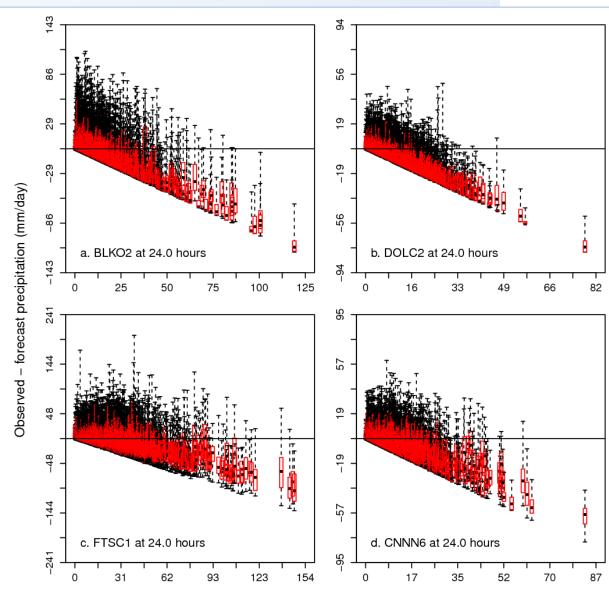
- Lead time of 1 day
- "0.05" = daily precip. exceeded 5% of time
- Moderate and high precipitation amounts generally show reliable probabilities
- Tendency for "dry bias" in PoP, i.e. forecast prob. too low
- Sample size becomes an issue in upper tail, so good to look at "raw data" plots...



MEFP-GFS precipitation forecasts

Conditional bias

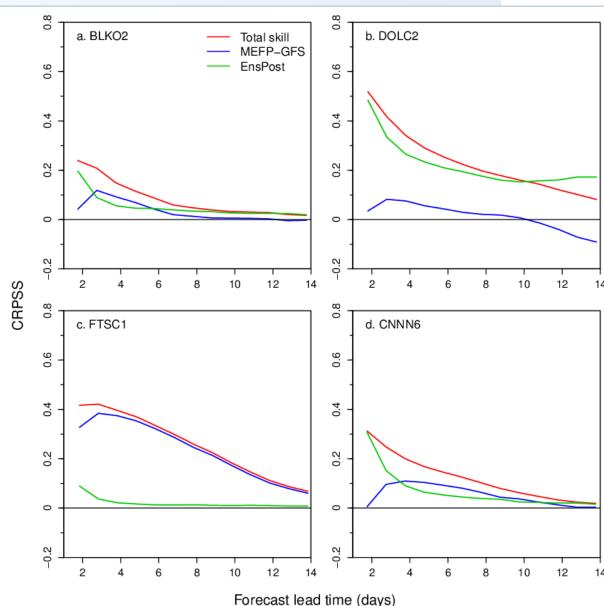
- Box plots ordered by observed amount at lead time of 1 day
- Tendency to underforecast largest observed precipitation amounts
- In FTSC1, forecasts generally "capture" even largest amounts
- Conditional bias increases with lead time (not shown)



MEFP-GFS streamflow forecasts

Skill and its origins

- Skill (CRPSS) with climate forcing as baseline (akin to ESP)
- Apportioned skill from MEFP-GFS and EnsPost
- Skill in CN mainly from MEFP-GFS
- Skill in CB mainly from EnsPost
- Skill in AB and MA from both sources
- <u>Big</u> seasonal variation though (not shown)



Phase I main findings

Overall, results as expected

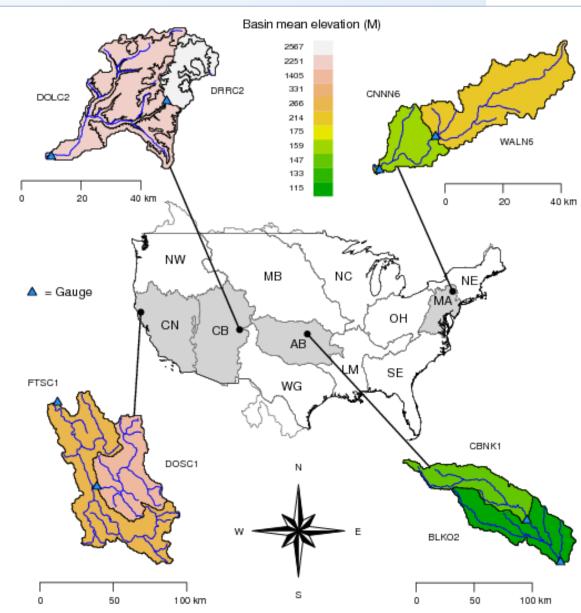
- MEFP preserves correlations of GFS, while reducing biases. Quality of GFS varies widely
- EnsPost adds skill by reducing bias (esp. low/ moderate flow). Difficulty of hydro. modeling varies
- Relative contributions from MEFP and EnsPost are highly conditional (on basin, season, flow etc.)
- Some issues to be explored
 - Conditional biases in PoP and heavy precipitation
 - Over-forecasting cold temperatures (GEFS is better)

3. Phase III: medium-range with latest GEFS, preliminary results

Phase III basins (same as Phase I)

Basins

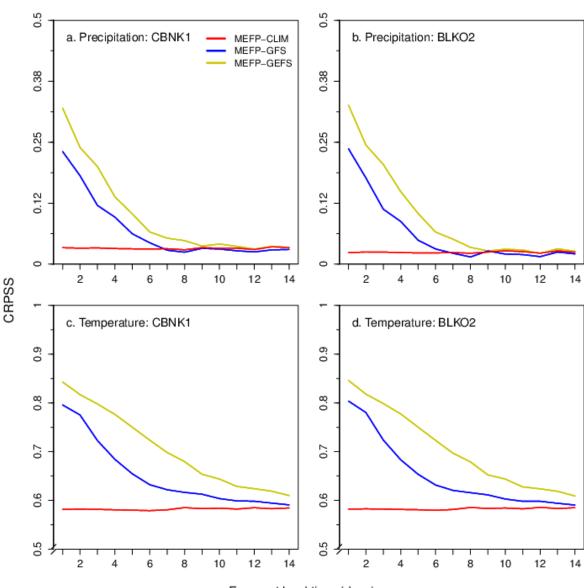
- Four RFCs
- Hindcasts: 1985-1999
- Upper/lower pairing
- USGS gauge at the outlet of each basin
- Relatively small basins (largest 2000 sq. miles)
- Low elevations in AB and MA
- Higher elevations in CB and CN
- CB and CN have MAT/MAP sub-basins



MEFP-GEFS: forcing

MEFP-GEFS adds value

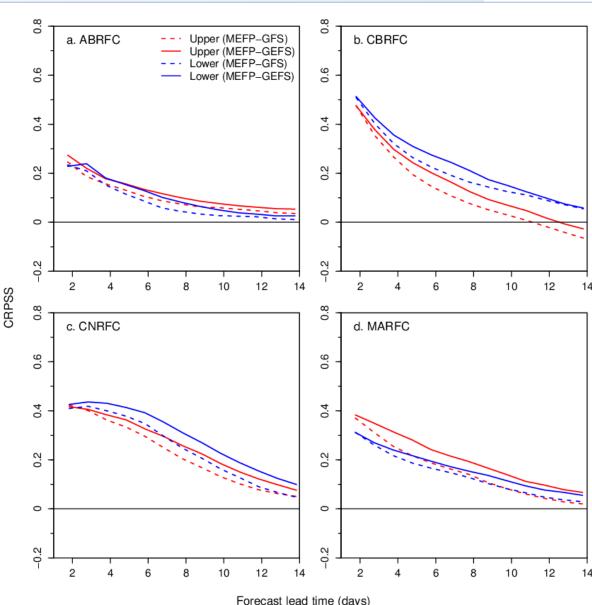
- Preliminary verification results from MEFP-GEFS
- Skill (CRPSS) from two basins in ABRFC, precipitation (top) and temperature (bottom)
- Sample climatology as baseline (unconditional)
- Raw GEFS improves substantially on GFS and this is reflected in MEFP-GEFS results shown here
- Improvements particularly noticeable in first week, longer for temperature



MEFP-GEFS: streamflow

Value also added to flow

- Streamflow with MEFP-**CLIM** baseline
- Skill shown for lower and upper basin
- Results include EnsPost
- GEFS consistently beats GFS (statistically)
- Skill from initial conditions and EnsPost dominates earliest times
- On time horizon of 4-10 days, GEFS adds ~1-2 days in lead time



Phase III preliminary findings

Forcing

- MEFP preserving correlations, reducing bias
- GEFS around 5-20% more skill than GFS in P (~1-7 days)
- As much as 50-75% more skill in T (~1-14 days)
- GEFS adds ~1-2 days lead time for P, and ~1-4 days for T

Streamflow

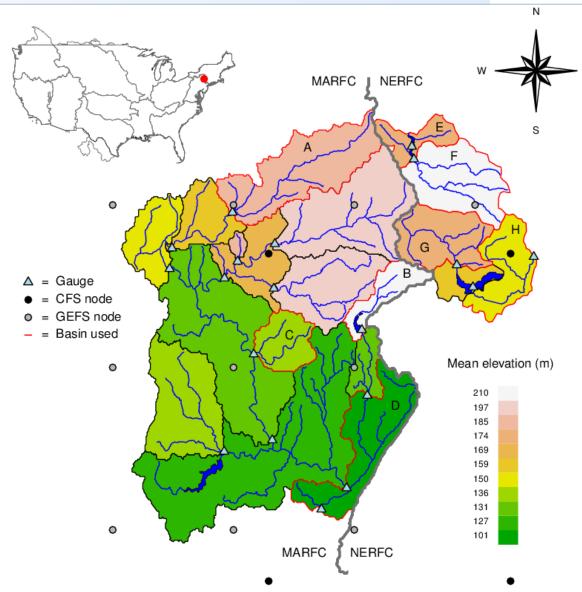
- Streamflow largely reflects P skill (T for snowmelt)
- Smaller added-value at early lead times (hydro. dominant)
- Once P washes through, GEFS adds ~1-2 days of skill

4. Phase II: long-range with GEFS+CFSv2+CLIM (GCC)

Phase II basins

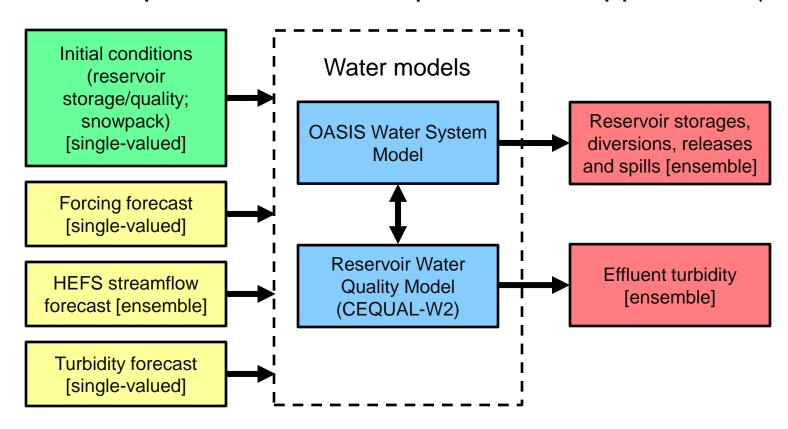
Basins

- MARFC and NERFC
- 22 basins
- Hindcasts: 1985-1999
- Verified 8 basins
 - MA-WALN6 (A)
 - MA-CCRN6 (C)
 - MA-MTGN4 (D)
 - MA-NVXN6 (B)
 - NE-MTRN6 (G)
 - NE-MRNN6 (H)
 - NE-PTVN6 (F)
 - NE-GILN6 (E)
- Most are subject to regulations (NYCDEP)



Motivation: NYCDEP

HEFS inputs to NYCDEP Operational Support Tool (OST)

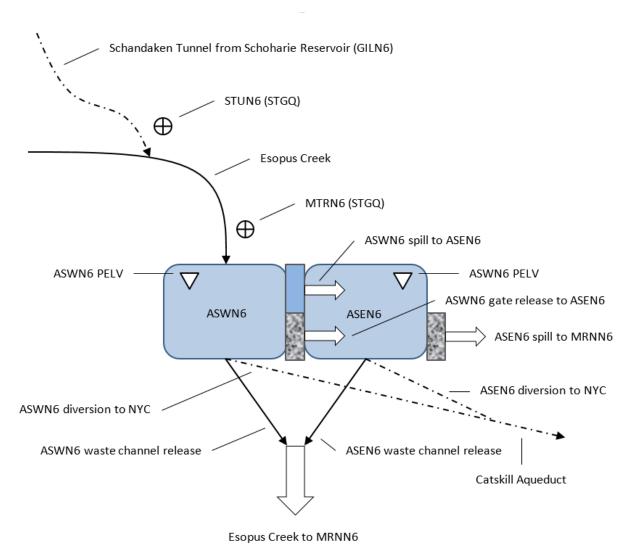


- Output: risks to volume objectives (e.g. habitat, flooding)
- Output: risks to quality objectives (NYC water supply)

Handling river regulations

Local flows verified

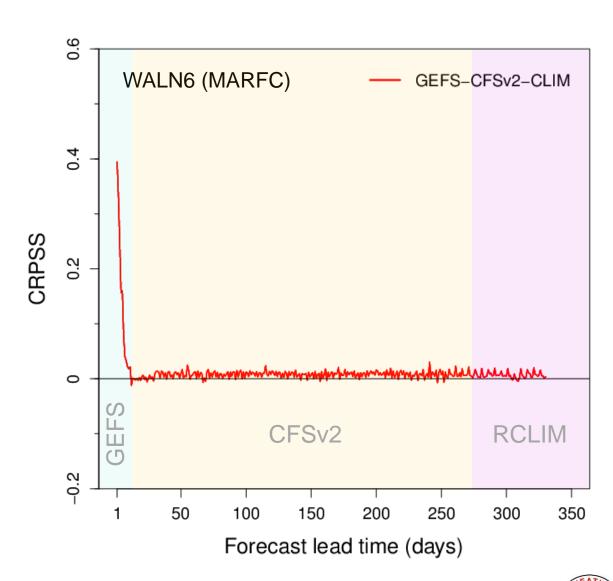
- Regulations often complex: see plot of Ashoken (NERFC)
- Adjust for diversions and releases in real-time
- In general, better to calibrate EnsPost on (estimated) natural flows
- Possible if regulations are known historically and in real-time
- Estimated local flows provided by NYCDEP
- EnsPost results <u>not</u> yet available



MEFP-GCC precipitation forecasts

Good skill in first week

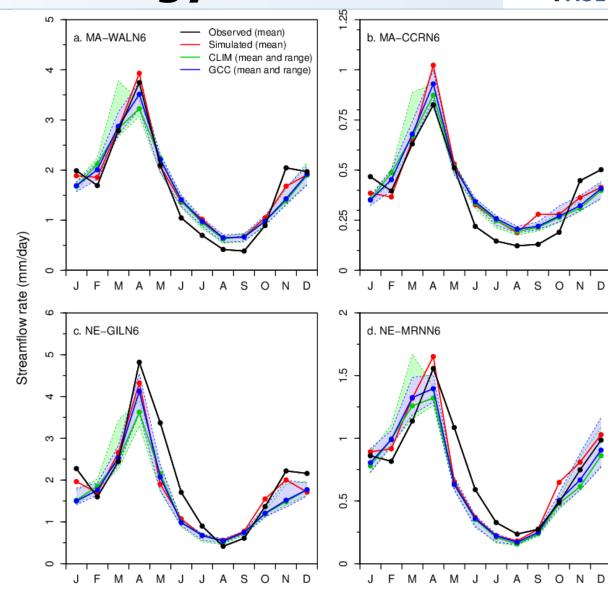
- Example of precipitation skill for WALN6
- Little skill in MEFP precipitation forecasts beyond ~one week (GEFS)...
- ...to be expected as raw CFSv2 has limited skill, except for specific regions and times of the year
- Similar patterns seen for larger accumulation volumes (e.g. weekly, monthly)



Streamflow climatology

Some seasonal biases

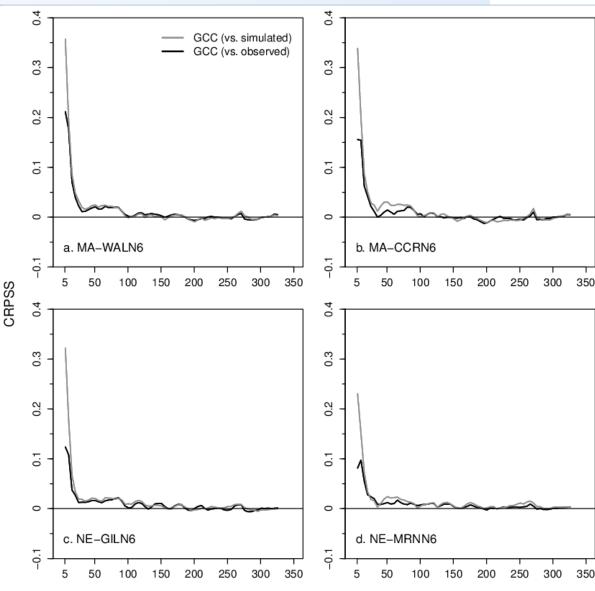
- Selected basins from MARFC and NERFC
- Mean forecast, observed and simulation by month
- Spread gives the range across forecast lead times (sample noise)
- Some systematic biases
- Low flow poorly captured in some basins, but spring peak reasonable
- Biases in MRNN6/GILN6
- Could remove these biases with EnsPost



MEFP-GCC: streamflow

Overall skill

- Total skill in streamflow when forced by MEFP-GCC versus MEFP-CLIM
- Verification against simulations: indicates skill without hydro. biases
- Overall, skill limited to period of GEFS forcing. But GEFS skill may last longer than 1-2 weeks
- EnsPost should add <u>meaningful</u> skill at early lead times
- Lack of forcing skill takes over at long lead times



Phase II main findings

Long-range precipitation problematic

- Very limited skill beyond ~1 week (GEFS)
- Similar story at aggregated periods (e.g. monthly)
- <u>But</u>: MEFP-GCC no worse than MEFP-CLIM (this is good)

Streamflow consistent with forcing

- Good skill for first 1-2 weeks (EnsPost will add further)
- No appreciable skill in long-range as GEFS washes out
- But: limited basins in north-east (CFSv2 poor)
- But: EnsPost will add skill when calibration is poor

5. Issues, gaps and recommendations (focused on science validation)

Main issues (from validation)

1. Biased forecasts of PoP

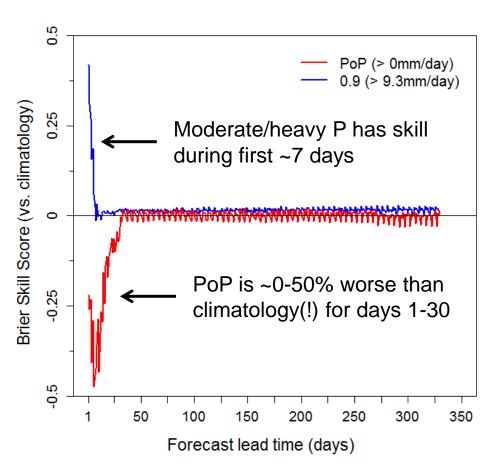
- Too many zero/light precipitation members (PoP too low)
- Particularly during first 30 days of long-range forecasts
- May be partly related to choice of threshold for PoP
- Was not seen in early versions (hopefully, simple fix)

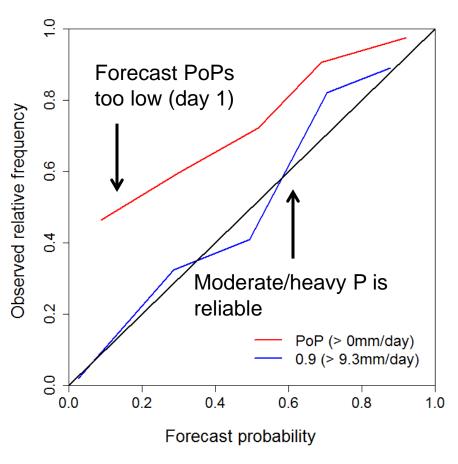
2. "Discontinuities" in forecast horizon

- Abrupt features in verification results for P and T
- Live forecasts for T reveal shifts on monthly multiples
- Confident this is related to "canonical events"

Examples: PoP/light precipitation

WALN6, 1-330 days, GEFS+CFSv2+CLIM





Discontinuities

Possible causes of abrupt changes

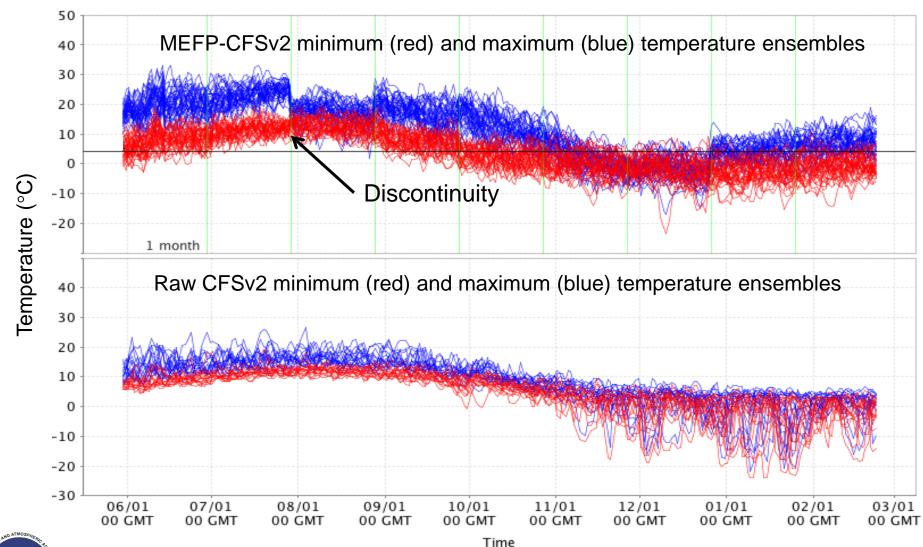
- Sudden changes in weather (real)
- Transition between raw forcing sources (artificial)
- Canonical events (artificial)

Canonical events

- Designed to capture skill in raw forcing at multiple scales
- Sequentially adjust climatology per event → final forecast
- Events operate on different parts of forecast horizon
- Limited sample data, so transitions may be abrupt

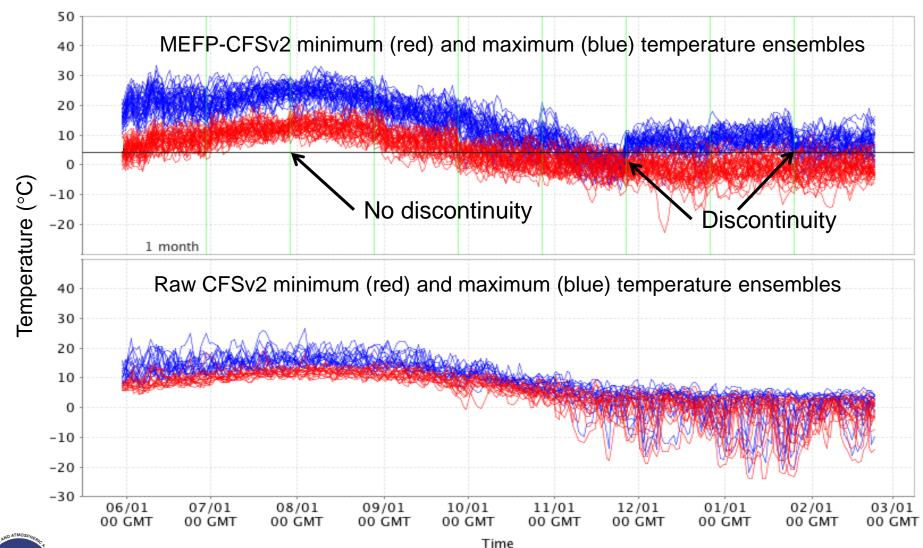
Canonical events: example (CREC1)

MEFP-CFSv2 temperature (daily min/max) using all canonical events



Canonical events: example (CREC1)

MEFP-CFSv2 temperature (daily min/max) WITHOUT "modulation events"



Gap analysis underway

Science and software gaps

- 1. Science gaps
 - "Known gaps" (recent validation & the "v1" in HEFSv1)
 - "Unknown gaps" (need further science validation)
- 2. Software gaps (also known/unknown)

Examples of science gaps

- Benchmark HEFS to operational forecasts
- Improve long-range forcing skill (climate indices?)
- Better accounting for hydro. uncertainties (e.g. DA)

Recommendations

Results so far broadly as expected

- Complex RTO project
- Prior testing was limited, mainly of individual components
- So, having no major surprises is a positive thing!

Proceed with planned rollout

- Some issues known (may be fixes in rollout timeframe)
- Can expect other issues with further evaluation
- Rollout will also raise issues (scientific and practical)
- CONOPS and training essential to smooth this transition

Recommendations

Further evaluation needed

- Limited basins and operating conditions so far
 - A few (mainly headwater) basins in four test RFCs
 - Limited testing of total flows downstream
 - Limited testing in regulated rivers (regulated ESP?)
 - Limited evaluation of high impact events
- No benchmarking against existing operations
 - ESP/statistical models for long range
 - RFC single-valued forecasts for short-range

Recommendations

Centralized infrastructure for evaluation

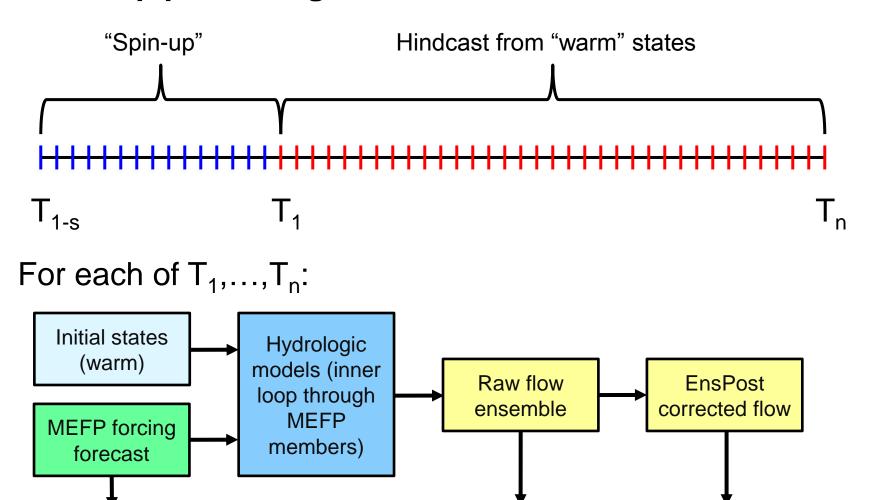
- Ad-hoc hindcasting is extremely difficult!
- NWC: opportunity to build low-latency archive & hindcasting/verification capability from ground-up
- Consistent, long-term, archive of observations, operational forecasts and hindcasts
- More work on diagnostics (reduce re-runs!)
- Testbeds to benchmark new techniques/data
- But evaluation must proceed in the interim

Questions?

Extra slides

Hindcasting mechanics (CHPS)

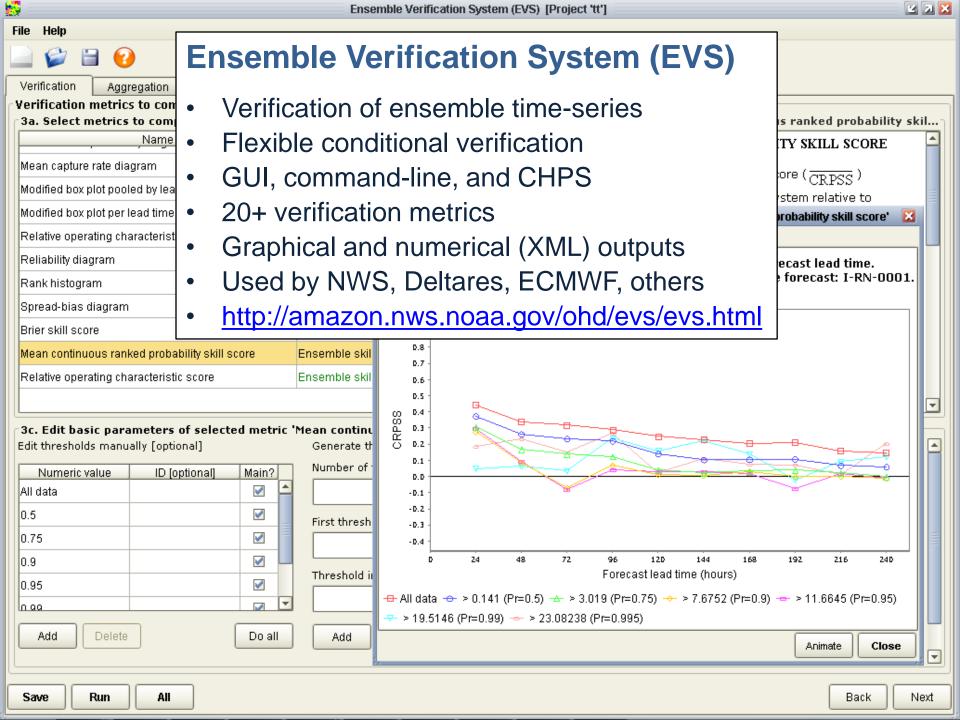
Two step process: generate warm states, then hindcast



Write

Write

Write



How does the EVS operate?

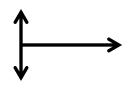
1. Configure ———— 2. Execute

3. Analyze

a. EVS GUI

a. EVS GUI

a. EVS GUI



b. Shell scripting

- Basins?
- Data?
- Metrics?

Configure **CHPS**

b. Command line

c. CHPS (hindcast)

C.39

b. external tools

c. CHPS/GraphGen

Reminder of dates/deliverables

1. Delivery of NYCDEP hindcasts

- Delivered by 4th July 2013 (final by 4th September)
- Using MEFP "as-is" (mitigated issues as far as possible)

2. Delivery of science validation

- Phased-evaluation completed by 30th September
- Covers only a small fraction of locations and scenarios

3. Delivery of HEFSv1 software

- Version 1.01 on 24/09, maintenance release in mid-Nov.
- Rolled out to other RFCs in 2014

Reminder of version differences

Two versions of MEFP in active use

- 1. "Legacy" MEFP: EPP3 (Fortran) with updated hindcaster
- Hindcaster (CFSv2/GEFS): NYCDEP & science validation
- Forecaster: used by CNRFC but pre-HEFS version
- 2. "Recoded" MEFP: Java version with hindcaster/forecaster
- Used real-time, including NYCDEP & 150 basins in CN

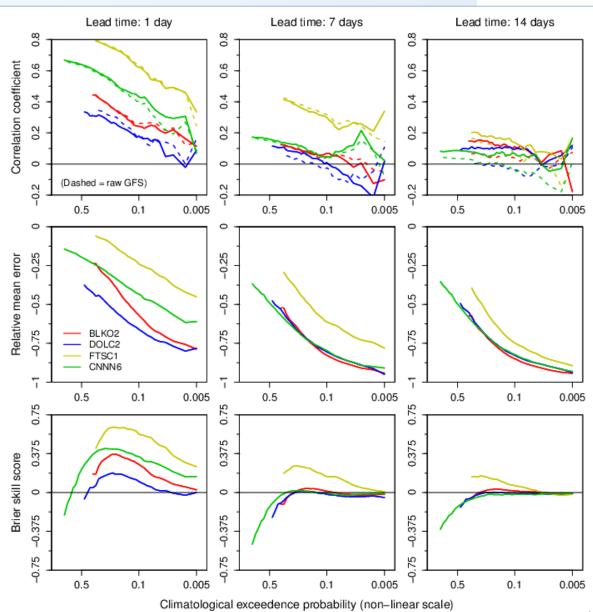
Equivalent (within some tolerance)

- Comparisons at OHD (software and hindcasts in 4 basins)
- Comparisons at CNRFC: some differences, can explain

Medium-range (GFS): example

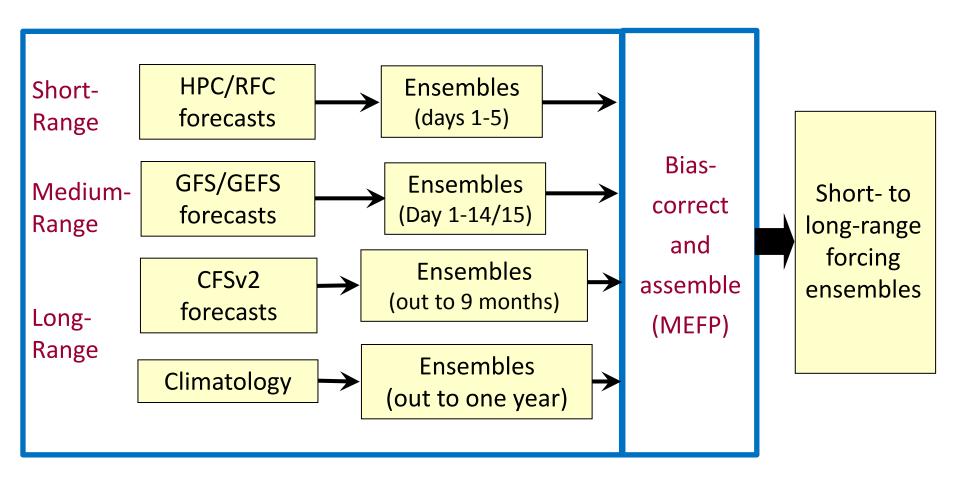
MEFP-GFS is skilful

- Subset of basins, 4 RFCs
- MEFP-GFS correlations similar to, or better than, raw GFS for all amounts across all forecast lead times (top)
- Biases increase for heavier precipitation (middle), but this is to be expected
- Some biases with PoP/light precipitation that reduce skill (bottom), which is not expected and points to an issue with the MEFP for PoP.



MEFP

MEFP data sources



Methodology: key steps

- Partition data: forecast horizon broken into several units of variability or aggregation periods known as "canonical events" (see later) to extract maximum skill from raw forecasts
- Calibrate: for each forecast data source and canonical event, model the joint probability distribution between the single-valued forecasts and the corresponding observations
- Generate ensembles: given the live, single-valued, forecast, obtain the conditional probability distribution of the observed variable (take a "slice" through the joint distribution), then sample members
- Recover space-time and cross-variable relationships by applying the Schaake Shuffle
- Assemble the forecasts from the different sources.

Canonical events: GFS and CFSv1

0.9

0.8

0.7

0.6

0.5

0.4

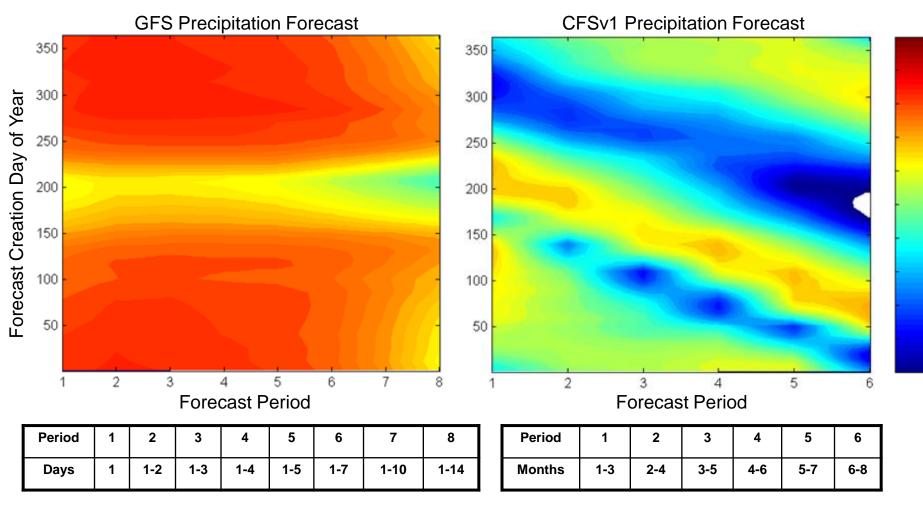
0.3

0.2

0.1

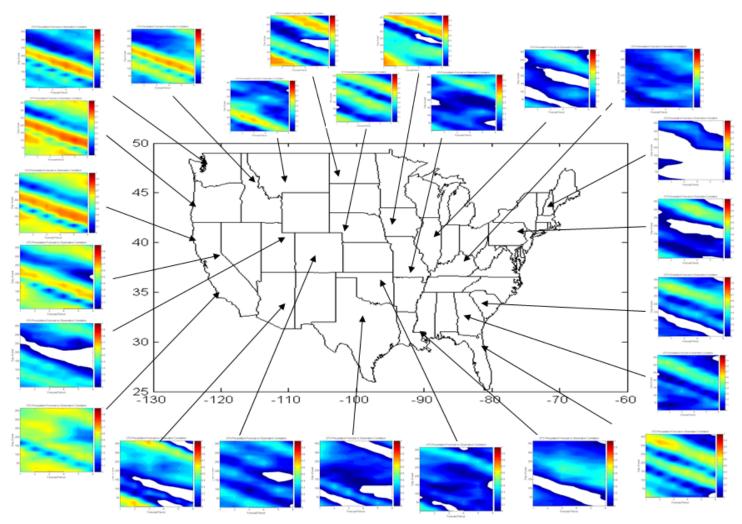
Correlation of GFS and CFSv1 precipitation forecast for NFDC1 in CNRFC

Correlation Coefficient of Forecast and Observation



Canonical events: CFSv1

Correlation of forecast and observation for CFSv1 precipitation forecasts



Potential skill of CFSv1 precipitation forecast for 24 basins

Meta-Gaussian model

☐ Consider the joint distribution of forecast and observation:

$$F(x,y) = P(X \le x, Y \le y)$$
 X: Forecast Y: Observation

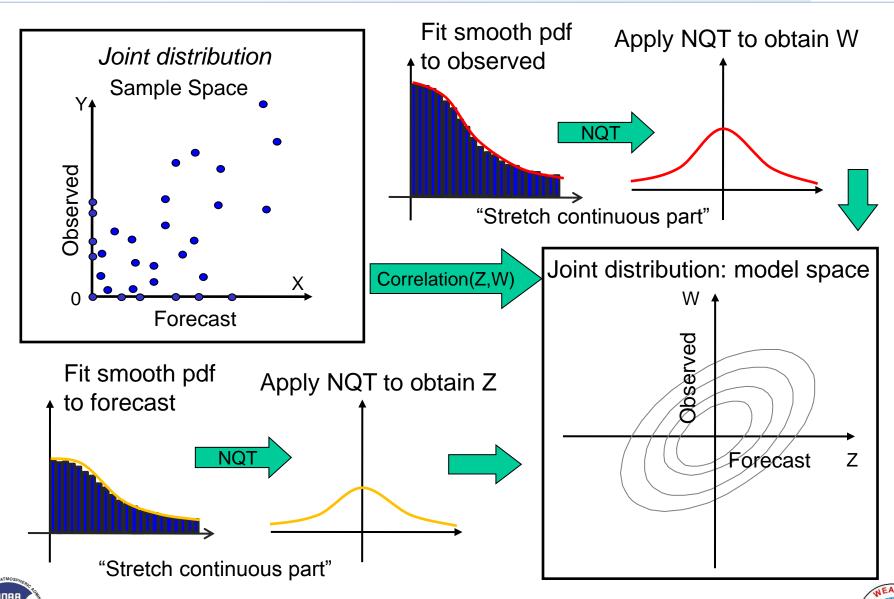
□ The meta-Gaussian distribution constructed from the forecast and observation (Kelly and Krzysztofowicz, 1997):

$$H(x,y) = B(Z, W; \rho)$$
, where $Z = Q^{-1}(F_X(X))$ Normal Quantile Transform (NQT) $W = Q^{-1}(F_Y(Y))$

B is bivariate standard normal distribution function.

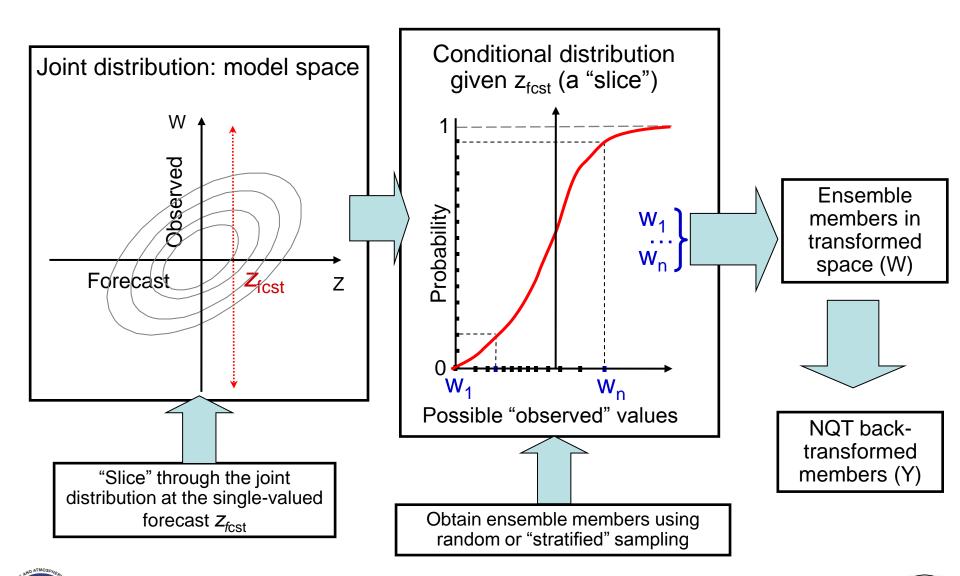
- Q is standard normal distribution function.
- ρ is correlation coefficient between Z and W.
- \Box Our assumption is that F(x,y) can be well approximated by H(x,y).
- Real-time forecast is then given by conditional distribution H(y|x). The members sampled from this must be back-transformed (inverse NQT).

Meta-Gaussian model: calibration



C.49

Meta-Gaussian model: ensembles



Precipitation intermittency

- □ Problem: NQT requires continuous variables, precipitation is mixed
 Solution: "explicit" or "implicit" treatment of precipitation
- Explicit treatment: the mixed-type meta-Gaussian model (Herr and Krzysztofowicz, 2005; Wu et al., 2011). Breaks the distribution into two parts. This approach works better for short time scales for which probability of precipitation (PoP) is low, i.e. dryer conditions
- Implicit treatment: similar to original meta-Gaussian model (Schaake et al., 2007; Wu et al., 2011). Defines a positive threshold above which continuous modeling occurs. May work better for longer aggregation periods and wet conditions where PoP is high.

Temperature ensemble generation

- Obtain daily minimum and maximum temperatures: convert observed and forecast time-series to daily minimum and maximum time series using a diurnal relationship.
- Apply MEFP to the daily minimum and maximum time series to produce daily maximum and minimum ensembles (using similar procedures for precipitation ensemble generation).
- The daily minimum and maximum ensembles are backtransformed to instantaneous values using the inverse of the diurnal relationship.

Preserving temporal patterns



For precipitation too, and between precipitation and temperature. And in space. A lot of dots to join!

Schaake Shuffle: pragmatic choice

- Meteorological events are correlated in space and time.
 - Temperatures tend to be correlated from basin to basin and from one day to the next, as well as during the day
 - Large-scale storms can be more persistent in space and time than rain showers.
 - There are also relationships between variables. For example, precipitation may not occur on the days with the highest temperatures.
- ☐ These connections or correlations can be approximated by the rank structure of the historical observations for the same location and time period over multiple years
- ☐ The Schaake-Shuffle (SS) arranges the ensemble members to have the same rank structure as the historical observations, i.e. it "maps" the rank structure of the observations to the ensemble forecasts