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Instructions 

1. Read the slide notes (under each slide) 

2. Review the slide for the main messages 

3. Answer questions (correct answers at end) 

4. Some advanced/optional slides also at end 

• After completing a slide… 

• …means optionally 

proceed to SC.63-SC.65 

5. If unsure: james.brown@hydrosolved.com 

SC.63 - SC.65 
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james.brown@hydrosolved.com 

Basic Hydrologic Ensemble 

Theory (for review in Seminar C) 

1st HEFS workshop, 08/19/2014 
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Contents 

1. Why use ensemble forecasting? 

2. What are the sources of uncertainty? 

3. How to quantify the input uncertainties? 

4. The ingredients of a probability model 

5. How to quantify the output uncertainties? 

6. How to apply operationally? 
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Limited scope 

• Not a mathematical/statistical primer 

• Not a literature review of current techniques 

• Focus on the basic theory of ensemble forecasting 

• Does not cover theory of hindcasting and verification 

Limited detail 

• Mathematical detail often sacrificed 

• Not focused on HEFS techniques (addressed later) 

• For more details, see linked resources (end of slides) 

What is not covered? 
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1. Why use ensemble 

forecasting?  
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Single-valued forecasts are misleading 

• There is an understandable desire for simplicity 

• Yet, also known that large uncertainties are common 

• Ignoring them can lead to wrong/impaired decisions 

• Uncertainties “propagate” (e.g. met > hydro > eco) 

Risk-based decision making 

• Knowledge of uncertainty helps to manage risks 

• E.g. risk of false warnings tied to flood probability 

• E.g. risk of excess releases tied to inflow probability  

Reasons to assess uncertainty 
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Reasons to assess uncertainty 

National Research Council, 2006 
COMPLETING THE 

FORECAST 

Characterizing and communicating 

Uncertainty for Better Decisions Using 

Weather and Climate Forecasts 

Committee on Estimating and     

Communicating Uncertainty in Weather and 

Climate Forecasts 

Board on Atmospheric Sciences and Climate 

Division on Earth and Life Studies 

NATIONAL RESEARCH COUNCIL OF THE 

NATIONAL ACADEMIES 

THE NATIONAL ACADEMIES PRESS 

Washington, D.C. 

www.nap.edu  

“All prediction is inherently uncertain and 

effective communication of uncertainty 

information in weather, seasonal climate, and 

hydrological forecasts benefits users’ 

decisions (e.g. AMS, 2002; NRC; 2003b). The 

chaotic character of the atmosphere, coupled 

with inevitable inadequacies in observations 

and computer models, results in forecasts 

that always contain uncertainties. These 

uncertainties generally increase with forecast 

lead time and vary with weather situation and 

location. Uncertainty is thus a fundamental 

characteristic of weather, seasonal climate, 

and hydrological prediction, and no forecast is 

complete without a description of its 

uncertainty.” [emphasis added] 
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Example application 

• HEFS inputs to NYCDEP Operational Support Tool (OST) 

 

 

 

 

 

 

 

• Output: risks to volume objectives (e.g. habitat, flooding) 

• Output: risks to quality objectives (NYC water supply) 

Initial conditions 

(reservoir 

storage/quality; 

snowpack)  

[single-valued] 

Forcing forecast 

[single-valued] 

Turbidity forecast 

[single-valued] 

HEFS streamflow 

forecast [ensemble] 

OASIS Water System 

Model 

Reservoir Water 

Quality Model 

(CEQUAL-W2) 

Effluent turbidity 

[ensemble] 

Reservoir storages, 

diversions, releases 

and spills [ensemble] 

Water models 
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In the interests of balance… 

• Technical details risk knowledge/communication gap 

• Scope for misunderstanding probabilities… 

• …for example, may not consider all uncertainties 

• Large upfront investment (in systems and training) 

But justified for operational forecasting 

• For operations, balance strongly favors ensembles 

• Reflected in investments (NWS, ECMWF, BoM..) 

• BUT: training and communication is a long-term effort 

 

Reasons to not assess uncertainty 
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Ensemble Prediction Systems 

• Highly practical tool to “propagate” uncertainty 

• Based on running models with multiple scenarios 

• Scenario is one combination of model settings 

• Need to include all main settings/uncertainty sources   

Advantages 

• Flexible: just run existing (chain of) models n times 

• Scalable: allows complex models, parallel processing 

• Collaborative: widely used in meteorology etc. 

 

Reasons to use ensemble technique 
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Focused on long-range  

• Ensemble Streamflow Prediction (since late 1970s) 

• Climate ensemble from past weather observations 

• Various adaptations (e.g. to use CPC outlooks) 

Limitations of ESP 

• Not based on forecasts, so only reproduces the past 

• Does not use best data for short-/medium-range 

• Does not account for hydrologic uncertainties/biases 

• Hydrologic uncertainties/biases can exceed meteo.! 

 

History of ensembles in NWS 
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HEFS service objectives 

• HEFS “A Team” defined several requirements: 

1. Span lead times from hours to years, seamlessly 

2. Issue reliable probabilities (capture total uncertainty) 

3. Be consistent in space/time, linkable across domains  

4. Use available meteorological forecasts, correct biases 

5. Provide hindcasts consistent w/ operational forecasts 

6. Support verification of the end-to-end system 

• These requirements are built into HEFS theory 

 

Need for an end-to-end system 
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What are the limitations of NWS-ESP? 

 A. Does not model forcing uncertainty 

 B. Does not model hydrologic uncertainty 

 C. Does not model total uncertainty 

 D. Does not use short/medium-range forecast forcing 

 E. Is not based on calibrated hydrologic models 

 F. Does not correct for biases 

 

• Answers are at the end. 

Question 1: check all that apply 
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2. What are the main sources 

of uncertainty? 
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Total uncertainty in hydrologic forecasts 

• Originates from two main sources: 

1. Meteorological forecast uncertainties 

2. Hydrologic modeling uncertainties 

• Can be further separated into many detailed sources 

How do they contribute? 

• Absolute and relative contributions vary considerably 

• Data/model factors: forecast horizon, calibration etc.  

• Physical factors: climate, location, season etc. 

 

Main sources of uncertainty 
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Example: two very different basins  

• Fort Seward, CA (FTSC1) and Dolores, CO (DOSC1)  

• Total skill in EnsPost-adjusted GFS streamflow forecasts is similar 

• Origins are completely different (FTSC1=forcing, DOLC2=flow) 
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Example: two very different seasons  

• However, in FTSC1, completely different picture in wet vs. dry season  

• In wet season (which dominates overall results), mainly MEFP skill 

• In dry season, skill mainly originates from EnsPost (persistence) 
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Uncertainty in model output depends on  

1. Magnitude of uncertainty in input sources 

2. Sensitivity of the output variable to uncertain inputs 

• Uncertainty in outputs increases with both factors 

• Sensitivity is controlled by the model equations 

Simple example (one uncertainty source) 

• Linear reservoir model, with flow equation: 

 Q=wS 

 Outflow = watershed coefficient * Storage 

 

How do sources contribute? 
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How do sources contribute? 

Input uncertainty (S) 

O
u
tp

u
t 
u
n
c
e
rt

a
in

ty
 (

Q
) 

Q=0.25S 

Q=1.0S 

Slope = “sensitivity” 

Width = “magnitude” 

Q 

S 

SC.61 
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What about non-hydrologic sources? 

• Hydrologic outputs often used in additional models 

• Are those uncertainties being considered? 

• What about social and economic uncertainties? 

What constitutes a “source”? 

• Where to stop? Can always drill down further 

• Detailed model may be desirable, but rarely practical 

• Aggregate detailed sources, capturing total uncertainty 

• For example: meteorological (S1) + hydrologic (S2) 

 

How can we capture all sources? 
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Flow forecast uncertainty depends on: 

 A. Hydrologic uncertainty 

 B. Meteorological uncertainty 

 C. Magnitude of input uncertainties 

 D. Economic and social uncertainties 

 E. Basin characteristics 

 F. Sensitivity of model output to each input 

 

• Answers are at the end. 

Question 2: check all that apply 
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3. How to quantify the input 

sources of uncertainty? 
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Error, bias, association 

• Error: deviation between predicted and “true” outcome 

• Bias: a consistent error (in one direction) 

• Association: strength of relationship (ignoring bias)    

Uncertainty 

• Inability to identify single (“true”) outcome 

• Equivalently: the inability to identify true error 

• Randomness/unpredictability introduces uncertainty 

• Need to model the possible errors (uncertainty) 

 

Preliminaries: terminology 
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Error, bias, association 
Observed  

Forecast 

• Unbiased  

• Strong association 

• Small total error 

• Large bias  

• Strong association 

• High total error 

• Some bias  

• Moderate association 

• Moderate total error 

• Unbiased (but conditionally biased)  

• Negative association 

• High total error 

Time 

V
a
lu

e
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Uncertainty: range of values 

Average temperature, today (C) 

P
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d
e
n
s
it
y
) 

Forecast 1 (climatology) 

Forecast 2 (issued 2 weeks ago) 

Forecast 3 (issued yesterday) 

Small uncertainty (i.e. 

much narrower spread 

than climatology) 

Uncertainty is a relative quantity 

Large uncertainty (i.e. spread 

quite similar to climatology) 

Observation (what happened) 

All three forecasts 

captured the 

observation 
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Sample size plot 

Forecast probability of flood 

“When flooding is forecast with 

probability 0.48, it should occur 48% of  

the time.” Actually occurs 36% of time. 
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Forecast class 

Uncertainty: range can be wrong! 

Capturing forecast uncertainty doesn’t mean 

always being right! 

0               0.1               0.2               0.3                0.4                0.5              0.6                0.7                0.8                 0.9                1.0 
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What is a random variable? 

• A variable with several possible outcomes 

• Actual outcome is unknown (e.g. until observed) 

• Event is a subset of outcomes (e.g. flows > flood flow) 

• Strict rules for assigning probabilities to events 

Types of (random) variable 

1. Continuous (e.g. temperature) 

2. Discrete (e.g. occurrence of a flood) 

3. Mainly continuous (e.g. precipitation, streamflow) 

Foundations: random variables 

SC.63-SC.65 
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Assigning probabilities from data  

Empirical approach 
• Observe several (n) past 

outcomes, tabulate their relative 

frequencies, and plot histogram 

• Useful for understanding 

climatological probabilities. 

Indeed, this is used for ESP 

• But, limited to what happened in 

the past. Also, sample size 

dependent / noisy 

• Thus, data often used to help 

calibrate a model for the 

probabilities in future. In other 

words, we use data in a model 

Flow intervals, CMS 
R

e
la

ti
v
e
 f

re
q
u
e
n
c
y
 (

n
=

1
0
0
) Moderate flows are 

relatively likely 

100  200  300  400  500  600  700 

Skewed distribution 

with “long tail” 

Interval Frequency Relative freq 

100 4 4/100 

200 15 15/100 

… … … 

SC.66 
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4. The ingredients of a 

probability model 
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Probability density 

PDF 
• Applies to continuous variables 

only (e.g. temperature, flow) 

• For continuous variables, 

probability is defined over an 

interval. For exact values, the 

interval is zero, hence Pr=0 

• “Probability density function” 

(PDF) plots the concentration of 

probability within a tiny interval 

(infinitely small) 

• Probability density must not be 

confused with probability. For 

example, densities can exceed 1 

Temperature, T (C) 
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Moderate temperatures 

are relatively more likely 

a

TPr[T a] f (t)dt


  

Probability 

density function, 

fT(t) 

a 
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Cumulative probability 

CDF 
• Cumulative probability is the 

probability that the random 

variable takes a value less than 

or equal to the specified value 

• Plotted for all possible values as 

a “cumulative distribution 

function” or CDF 

• Cumulative probabilities are 

always between [0,1] and 

approach 0 at - and 1 at +  

• Cumulative probabilities are 

non-decreasing from left to right 

Temperature, T (C) 
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a

T TPr[T a] F (a) f (t)dt


   

Cumulative distribution 

function, FT(t) 

a 

FT(a) 

SC.68 - SC.69 
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Some common PDFs 

Variable value 
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Weibull (e.g. 

precipitation) 

Gamma (e.g. 

precipitation) 

Normal (e.g. 

temperature) 

Lognormal (e.g. 

streamflow) 
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The remarkable normal distribution 

A common shape 
• Central Limit Theorem: under 

certain (common) conditions, a 

sum of random variables is 

approximately normal 

• Sums of random variables are 

common in nature & engineering 

• Thus, many variables are 

approx. normally distributed  

• Normal is a simple shape with 

many desirable characteristics… 

• E.g. A linear combination of 

normal variables is also normal! 

Temperature, T (C) 
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Mean, , or “expected value” 

(also the median and mode) 

 
2
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1
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Probability 

density 

function, fT(t) Spread,  
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Estimating parameters of shapes 

Temperature, T (C) 
P
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Mean or “expected” 

value of the distribution 

Probability 

density 

function, fT(t) 

Spread or 

var iance

n

ii 1

n 2

ii 1

1mean t
n

1var iance (t mean)
n







 





Model parameters 
• Fitted probability distributions 

have parameters to estimate 

• Parameters dictate location, 

width, precise shape etc. 

• Normal distribution is specified 

by the mean and spread 

• Different ways to estimate 

parameters. For example, using 

historical sample data (right) 

• When forecasting a random 

variable, the future parameters 

depend on the forecast model  
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The normal distribution is: 

 A. A skewed probability distribution 

 B. Completely defined by its mean value 

 C. Symmetric 

 D. A distribution with equal mean, median and mode 

 E. Widely used in probability and statistics 

 F. Applicable to discrete random variables 

 

• Answers are at the end. 

Question 3: check all that apply 
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Marginal & conditional probability 

Marginal probability 

• Simplest case, involving one random variable 

• For example, streamflow at one time and location 

• Can be expressed as a PDF or CDF (see above) 

Conditional probability 

• A probability distribution that is subject to conditions 

• For example, streamflow given that precipitation > 0 

• This is expressed as a (conditional) PDF or CDF 

• We express these conditions if they are important 
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Two random variables (could be more) 

Joint probability distribution 

fX(x) 

fY(y) 

δy 

δx 

Pr(X in δx and Y in δy) 

Contours show joint 

Relationship, fXY(x,y) 

e.g. X= Washington DC  

temperature 

e.g. Y = NYC  

temperature 
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Contains marginals and conditionals 

Joint probability distribution 

Temperature in  

Washington DC is 40F 

Temperature in  

NYC, when DC 

is 40F  

fY|X(y|x=40) 
Contours show joint 

Relationship, fXY(x,y) 

Slice through distribution at x=40F 

 

x=40F 
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Joint probability distribution 

What does it tell us? 

• Contains information about each variable (marginals) 

• Contains information about how they are related 

• Could involve multiple times, locations, variables,…  

Why do we need to consider this? 

• Hydrologic models have inputs that are dependent 

• For example, temperature, precipitation, evaporation 

• Can’t have “snow” ensemble member at 40C! 

• Many different ways to model this dependence   

SC.70 
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Correlation,  
• Measures degree of linear (not 

non-linear!) association between 

two continuous variables, X & Y  

• For two joint normally distributed 

variables, correlation captures 

their joint relationship  

• Linear modeling is common in 

hydrometeorology. Thus, 

correlation is widely used 

• If input (X) to a linear regression is 

normal, output (Y) is normal (N) 

with mean, +X, and variance 

(2) equal to variance of residual,  

Linear dependence and correlation 

Temperature in sub-basin S1, X (C) 
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Data transforms 

Data transforms are common 

• Many reasons for data transforms 

• For example, to suppress extreme values 

• Power transforms widely used (e.g. Box-Cox) 

• Often used to make data more normally distributed 

Distribution remapping 

• More aggressive, non-linear, data transformation 

• Maps distribution of Q to a standard distribution, Z  

• Normal Quantile Transform (NQT) is one example… 
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Transform data to be marginally normal 

 

 

 

 

 

 

 

 

• Need to back-transform each model prediction to flow space 

Normal Quantile Transform (NQT) 

Flow, Q (CMS) 
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Cumulative distribution 

function of data, FQ(q) 

qz 

Normal quantile of flow, Z 

Standard normal cdf, 

FZ(z)=N(0,1) 

zq 

FQ(qz) 

1

q Z Q zz F (F (q ))

Quantile function 

maps from 

probability, FQ(qz), 

to quantile, zq. Quantile function 

of N(0,1) 
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Modeling considerations 

When theory meets hydrologic reality 

• Variables often highly skewed, strongly not normal 

• Space/time and cross-variable relations are complex 

• Climate/river processes can change (non-stationarity) 

• Sub-populations often exist (e.g. amount-dependence) 

What is the optimal model complexity? 

• Keep it simple: what can reasonably be ignored? 

• Limited historical data implies a simpler model… 

• …otherwise, there’s a real risk of “curve fitting” 



Office of Hydrologic Development 

Silver Spring, MD 

 

National Oceanic and Atmospheric Administration’s 

National Weather Service SC.44 

The correlation coefficient is: 

 A. A parameter of the bivariate normal distribution 

 B. A parameter of the marginal normal pdf 

 C. Always zero for two independent variables 

 D. Rarely applicable 

 E. A measure of linear dependence 

 F. A measure of non-linear dependence 

 

• Answers are at the end. 

Question 4: check all that apply 
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5. How to quantify the output 

(i.e. forecast) uncertainty? 

SC.72 
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Monte Carlo Simulation 

Foundation for ensemble prediction 

• For any model, g, with inputs {X1,…,Xm} and output, Y: 

1. Draw a random sample, {x1,…,xm}, from input joint PDF 

2. Run the model, y1=g(x1,…,xm), and store the result 

3. Repeat n times (e.g. n=1000) or until PDF of Y is stable  

Scales up with model complexity 

• Makes no assumptions about g: just a “black box” 

• Thus, works for complex, non-linear, models 

• As accurate as required (i.e. n), but runtime high! 

 
SC.73 
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Importance of unbiased sampling 

Each sample must be equally likely! 
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Simple random sampling 

Sampling any CDF 
• Many different approaches to 

random sampling, depending on 

probability distribution 

• Simplest, generic, approach is 

“inverse transform sampling” 

• Start with a standard Uniform 

distribution, U(0,1) 

• Any pseudo-random number 

generator samples from U(0,1) 

• For random sample, u1,…,un, 

transform numbers to target 

distribution, FT(t), as  

Temperature, T (C) 
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Monte Carlo simulation requires: 

 A. A simple forecast model 

 B. An equal chance of sampling each possible value 

 C. The joint probability distribution of model inputs 

 D. Uncorrelated inputs 

 E. Running the forecast model many (n) times 

 F. An infinitely large sample size 

 

• Answers are at the end. 

Question 5: check all that apply 
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6. Applying the theory to 

operational forecasting in 

hydrology 
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Reminder of uncertainty sources 

Total uncertainty in streamflow from: 

1. Meteorological forecast uncertainties 

2. Hydrologic modeling uncertainties 

• (But don’t forget social/economic/decision context) 

Hydrologic uncertainties include 

• Model structure (SNOW-17, SAC-SMA, Lag/K etc.) 

• Model parameters 

• Initial conditions and state variables 

• River regulations, reservoirs, manual adjustments 
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Quantifying uncertainty 

Different techniques and aims 

• Broadly speaking, two groups of techniques: 

1. Those that do not aim to quantify total uncertainty 

• Risky. Generally, they ignore hydrologic uncertainties 

2. Those that do aim to quantify total uncertainty 

a. By modeling directly (statistically) in a lumped way 

(also known as Model Output Statistics, MOS)  

b. By modeling indirectly, via individual sources (i.e. by 

conducting uncertainty propagation) 

c. Extension of b. to remove biases in forcing and/or flow 



Office of Hydrologic Development 

Silver Spring, MD 

 

National Oceanic and Atmospheric Administration’s 

National Weather Service SC.53 

Characteristics of selected systems 

Examples of operational techniques 

Characteristic US-ESP US-MMEFS US-HMOS US-HEFS EU-EFAS 

Models total uncertainty      

Models met. uncertainty      

Models hydro. uncertainty      

• Parameter uncertainty      

• Structure uncertainty      

• State updating      

Corrects overall streamflow bias      

Corrects met. bias (pre-proc.)      

Corrects hydro. bias (post-proc.)      

Uses single-valued forcing      

Uses full ensemble forcing      

Uses climatological forcing      

Provides short-range forecasts      

Provides medium-range forecasts      

Provides long-range forecasts      
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Aim: quantify total uncertainty in flow 

HEFS concept 

Meteorological uncertainty 

• Precipitation/temperature 

• “Raw” forecasts 

• Short: RFC, GEFS 

• Medium: GEFS 

• Long: CFSv2, climate 

Hydrologic uncertainty 

• Model states 

• Model parameters 

• Model structure 

• SAC-SMA/SNOW17 

MEFP model and 

parameter estimator 

• Historical raw forecasts 

• Historical observations 

• Model uncertainty/bias 

• Operates at basin-scale 

EnsPost model and 

parameter estimator 

• Lumped approach 

• Historical simulations 

• Historical observations 

• Model uncertainty/bias 

Address two key 

uncertainty sources 

STEP 1: model  

(“learn from past”) 

STEP 2: forecast 

(“apply to future”) 

MEFP forecaster 

• Take raw input forecast 

• Quantify unc./bias 

• Sample members 

EnsPost forecaster (final 

HEFS forecast) 

• Take simulation 

• Quantify unc./bias 

• Sample members 

• Adjust “raw” flow 

H
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MEFP: pre-

processor 

Raw weather and 
climate forecasts 
(GEFS, CFSv2,..) 

Unbiased forcing 
(basin scale) 

Hydrologic 

Ensemble 

Processor 

EVS: 

verification 

“Corrected flow” 

Hydrologic data 

Verification results 

Ensemble  products 

“Raw flow” 

EnsPost: 

post -

processor 

Data 

assimilator 

(basin scale) 

HEFS software components 

MEFP PE: 

parameters                      

GraphGen: 

products 

EnsPost PE: 

parameters 

= Forecast tool (real-time/hindcast) = Supporting tool = Future capability 
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Many challenges remain 

Modeling challenges 

• Accounting for all major sources of uncertainty 

• Accounting for joint relationships (in space/time etc.) 

• Accounting for real-time MODs and regulations 

• Accounting for uncertainties beyond hydrology 

Service challenges for operational use 

• Ensuring continuity of service (e.g. w/ NCEP models) 

• Ensuring adequate training for use of ensembles 

• Communicating uncertainties broadly & successfully 
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The NWS HEFS aims to: 

 A. Quantify the total uncertainty in streamflow 

 B. Quantify the meteorological uncertainties only 

 C. Correct for biases in the streamflow forecasts 

 D. Avoid the need for hydrologic model calibration 

 E. Produce equally likely traces of streamflow 

 F. Correct for biases in the meteorological forecasts 

 

• Answers are at the end. 

Question 6: check all that apply 
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Resources and references 

• Hydrologic Ensemble Prediction Experiment (HEPEX). Visit www.hepex.org  

• E.g. http://hepex.irstea.fr/operational-heps-systems-around-the-globe/  

• HEFS documentation: http://www.nws.noaa.gov/oh/hrl/general/indexdoc.htm  

• Demargne, J., Wu, L., Regonda, S., Brown, J., Lee, H., He, M., Seo, D-J., 

Hartman, R., Fresch, M. and Zhu, Y. 2013. The science of NOAA’s 

operational Hydrologic Ensemble Forecast Service. Bulletin of the American 

Meteorological Society 95, 79-98. doi: 10.1175/BAMS-D-12-00081.1 

• Ramos, M. H., van Andel, S. J., and Pappenberger, F. 2013. Do probabilistic 

forecasts lead to better decisions?, Hydrology and Earth System Sciences 

Discussions, 17, 2219-2232, doi:10.5194/hess-17-2219-2013 

• Wilks, D.S. 2006. Statistical Methods in the Atmospheric Sciences. 2nd ed. 

Elsevier: San Diego. 

• Fresch, M. et al., 2014. Concept of Operations for the Hydrologic Ensemble 

Forecast Service.  

http://www.hepex.org/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://hepex.irstea.fr/operational-heps-systems-around-the-globe/
http://www.nws.noaa.gov/oh/hrl/general/indexdoc.htm
http://www.nws.noaa.gov/oh/hrl/general/indexdoc.htm
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Advanced slides and 

answers to questions 
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Advanced slides from 

Section 2 
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Generalizing to additional sources 

Output uncertainty (in simplest case) 

• Linear model, g, uncorrelated inputs, Xi, output, Y 

 

 

• Output unc. = (sum of) input unc. * input sensitivity 

Simple equation, but rarely applicable 

• Principle always applies (i.e. magnitude * sensitivity) 

• But g is rarely linear and inputs rarely uncorrelated 

• For hydrologic models, need an ensemble approach 

 

2
m

i

i 1 i

g
Var(Y) Var(X )

X

 
  

 


Here, the variance (Var) is a measure of 

“average uncertainty”. The derivative is the 

“slope” for input Xi, which is the sensitivity. 

SC.20 
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Advanced slides from 

Section 3 
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Sample space of a random variable 

Universal set 

Real numbers 

Streamflow 

Flooding 

The sample space 
• The set of all possible values or 

“outcomes” that a random 

variable could take (e.g. the 

possible values of streamflow) 

• The universal set is the largest 

set (it contains everything) 

• Streamflow is a subset of real 

numbers, i.e. no negative flows 

• An event is a subset. It contains 

one or more possible outcomes 

(e.g. streamflow values) 

• For example, flooding is an 

event (flow values > flood flow) 
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A random variable is: 

 A. The opposite of a deterministic variable 

 B. A complete probabilistic description 

 C. Streamflow 

 D. A discrete event 

 E. An uncertain variable 

 F. A variable with a sample space of events 

 

• Answers are at the end. 

Question A1: check all that apply 
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Streamflow 

Assigning probabilities to events 

Probability measure 
• Assigns a probability to every 

possible event, E, in the sample 

space, S 

• A probability measure must 

follow certain logical rules or 

“axioms”, namely: 

1. Probabilities between [0,1] 

2. Probabilities (Pr) of mutually 

exclusive events are additive: 

Pr[Drought or Flood] = 

Pr[Drought]+Pr[Flood] 

3. Sum of all probabilities equals 1 

Drought (D) 

Flood (F) 

Pr[S]=1 

Pr[Drought or Flood] 

= Pr[Drought]+Pr[Flood] 

0 ≤ Pr[E] ≤ 1 for all E 

SC.28 
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But how best to define a model? 

Two schools of thought (big topic!) 

• Two approaches to using probability laws 

1. Frequentist approach emphasizes data (empirical) 

2. Bayesian approach exploits all available knowledge 

Modern Bayesian paradigm 

• Frequentist approach is too narrow/limiting… 

• …rivers change (history not always applicable) 

• …information about rivers changes (e.g. new dataset) 

• Bayesians embrace data, models, expert opinions 

SC.29 
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Advanced slides from 

Section 4 
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Probabilities to quantiles 

Quantiles 
• The CDF provides a mapping 

between real values and (non-

exceedence) probabilities 

• For a given probability, p, the 

corresponding real value, q, is 

known as the q-quantile 

• For example, the median is the 

0.5 quantile or the 50th percentile 

as 50% of values fall below this 

• The inverse of a CDF is 

expressed as            and is 

known as the “quantile function.” 

Thus, the median is  
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Central moments 

Basic features 
• The moments of a probability 

distribution describe its basic 

characteristics  

• The first moment is the mean or 

“location”, also known as the 

expected value of T, E[T] 

• The central moments subtract 

the mean, as location does not 

matter for higher moments 

• The second (central) moment is 

the variance or “average 

uncertainty”, third is skew, etc. 

Temperature, T (C) 
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mean E[T]

var iance E[(T E[T]) ]

skew E[(T E[T]) ]



 
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Probability 

density 

function, fT(t) 

Spread or 

var iance

SC.32 
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Independence and dependence 

Definition of statistical independence 

• Random variables may be “statistically independent” 

• Value of one variable does not influence the other 

• In other words: fXY(x,y)=fX(x)fY(y) for all x and y 

• Quite rare in hydrology, but we often assume it! 

Types and measures of dependence 

• Independence is well-defined. Dependence is tricky 

• Different types of relationships and measures exist 

• For example, linearly related variables are “correlated” 

SC.40 
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Recall this simple case 

Output uncertainty defined analytically 

• Linear model, g, uncorrelated inputs, Xi, output, Y 

 

 

• Output unc. = (sum of) input unc. * input sensitivity 

Problems with this analytical approach 

• Hydrologic models are nonlinear, i.e. g is nonlinear 

• The inputs, Xi, are generally related (e.g. temp/prcp) 

• Output, Y, rarely normal: mean/variance not enough 
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SC.46 
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Importance of “large” sample size 

How many samples is enough? 

• The larger the sample, the closer the output to target 

• But, computationally demanding for complex models! 

• Variance of the output (Y) has a sampling error: 

 

 

• Inversely proportional to square root of sample size, n  

• Sampling uncertainty declines only gradually with n 

• Can improve this with “clever” sampling techniques 

 

2 2

Y Y

2
ˆsd( )

n 1
  



Note: the sample standard deviation (sd) of the 

variance of Y increases with the variance of Y. 

Thus, outputs w/ large uncertainty need larger n! 

SC.47 
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Answers to questions 
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Q1. (B,C,D,F) 

Q2. (A,B,C,E,F) 

Q3.  (C,D,E) 

Q4.  (A,E) 

Q5.  (B,C,E) 

Q6.  (A,C,E,F) 

QA1. (A,E,F) 

 

Answers to questions 


