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Fig. 1. Plot of all severe weather reports for the 24-hour period beginning at 1200
UTC 6 July 1995. Dark circles indicate hail reports while the cross symbol
represents wind gusts or damage. Triangle represent tornadoes and diamond
shapes indicate hail and wind damage reported at the same location.

Fig. 2. Same as Fig. 1 but for the 24-hour period beginning at 1200 UTC 9 July
1995. Note the letter "T" indicates the location of a tornado.

Fig. 3. Monthly distribution of SSWEs during the period from 1955 through 1993.

Fig. 4. Mean composite chart at 0000 UTC for Pattern A SSWEs affecting
Washington and Oregon. Dotted line denotes 850 mb thermal ridge. Frontal
boundary is position of 700 mb front. Long dashed lines labeled H5 and H3
indicate trough axis positions at 500 and 300 mb. Thin line with arrow indicates the
jet axis at 500 mb while thick line with arrow represents the jet axis at 300 mb.
Broad zigzag line shows an area of 500 and 300 mb diffluence while 500 and 300
mb ridge axes are denoted by long, north-south oriented narrow zigzag line.

Fig. 5. Upper air analyses at (a) 850 mb, (b) 700 mb, (c) 500 mb, and (d) 250 mb
levels for 1200 UTC 6 July 1995. ’

Fig. 6. Skew-T logp uppei' air sounding analyses for Spokane, Washington (GEG)
for July 1995 at (a) 0000 UTC 6th, (b) 1200 UTC 6th, and for Boise, Idaho (BOI) for
July 1995 at (¢) 0000 UTC 6th and (d) 1200 UTC 6th. '

Fig. 7. Same as Fig. 5 but for 0000 UTC 7 July 1995.

Fig. 8. Same as Fig. 4 but for 0000 UTC 7 July 1995.

Fig. 9. Skew-T log p upper air sounding analyses for Spokane, Washington (GEG)
for July 1995 at (a) 0000 UTC 7th and for Boise, Idaho (BOI) for July 1995 at (b)
0000 UTC T7th.

Fig. 10. Same as Fig. 5 but for 1200 UTC 9 July 1995.

Fig. 11. Same as Fig. 6 but for 0000 UTC 9th and 1200 UTC Sth.

Fig. 12. Same as Fig. 5 but for 0000 UTC 10 July 1995.

Fig. 13. Same as Fig. 4 but for 0000 UTC 10 July 1995.



The 6 July and 9 July 1995 Severe Weather Events in the
Northwestern United States: Recent Examples of SSWEs

Eric C. Evenson
National Weather Service Forecast Office
Boise, Idaho

Formerly From
National Severe Storms Forecast Center
Kansas City, Missouri

Abstract

During early July of 1995, two significant weather episodes affected parts of the
northwestern United States. Severe weather, over a relatively large area, was reported
with each event across portions of Washington, Oregon, Idaho, and the western portions
of Montana and Wyoming. Although the occurrence of severe weather in the northwestern
United States is typically isolated in nature, a recent study by Evenson and Johns (1995-
hereafter EJ) indicated that these significant severe weather episodes (SSWEs) occur at
an average frequency of about two per year. In the work by EJ, common synoptic and
thermodynamic patterns were found to produce these SSWEs. Characteristic composite
charts were developed to assist forecasters in recognizing the parameters associated with
these rather destructive severe weather events.

This study will examine two recent SSWEs, the events of July 6 and 9, 1995. On July 6,
severe weather was reported (33 reports) across portions of Washington, Oregon, Idaho,
and the western portions of Montana and Wyoming. Wind damage was the primary severe
weather phenomena during this event. On July 9, the presence of unusually large
instability lead to the development of severe weather (42 reports) across portions of
Washington, Oregon, Idaho, and the western parts of Montana. Of importance fo note is
that very large hail, between baseball and grapefruit size, was common over parts of
Washington and Oregon. This lead to extensive crop and property damage totaling over
eighty million dollars. Common synoptic and thermodynamic conditions associated with
these events are discussed and compared with the findings by EJ. It will be noted that
these conditions producing the SSWEs were similar to those found by EJ. This suggests
that a greater understanding of the synoptic environment associated with these significant
and destructive events exists which should help forecasters in better forecasting and early
detection of such phenomena.



1. lntroduction

Recent work by Evenson and Johns
(1995-hereafter EJ) noted that significant
severe weather episodes (SSWEs) in the
northwestern United States occur at an
average frequency of about two per year.
These episodes, which are generally
atypical of the type of severe weather
commonly found in the western United
States (e.g.,, isolated high based
thunderstorms producing damaging
winds), have been found to produce
severe weather over a relatively large
area and can be quite destructive.
Because of factors such as population
density (McNuity, 1981), the average may
actually be higher than two per year. The
addition of radars, public awareness, and

spotters will likely lead to an increased

" detection (documentation) of SSWEs,
such that the climatology will be more
representatlve of actual events

In early July 1995 two SSWEs occurred

across portions of Oregon, Washington,
Idaho, and the western - portions of

Montana and Wyoming. On the 6th, 33

severe weather events were reported
(Fig. 1), and 42 severe weather events
were recorded on the 9th (Fig. 2). Very
large hail, - between ‘baseball and
grapefruit size, fell on the 9th contributing
to over elghty million dollars in damage to

crops and property across portions of

north-central and northeast Oregon as
well as ~southeast Washington. In
addition, wind gusts between 60 and 80
mph and a tornado were reported.

This study will examine the synoptic and
thermodynamic conditions associated
with the SSWEs on the 6th and Sth. Data
from these two events will be compared

with each other as well as with the
characteristic composite synoptic patterns
developed by EJ. In addition, forecast

- implications of the findings will also be

discussed.

Il. SSWEs

As defined by EJ, an SSWE is any of the
following:

1) A severe weather episode where 10
or more severe weather events occur in
the study area' during a 24-hour period
beginning at 1200 UTC

2) A severe weather episode with 5 or
more severe weather events in the study
area during a 24-hour period beginning at
1200 UTC, mcludlng at least one tornado
of F3 or greater intensity. :

~ 3) A severe weather episode in which
- the Storm Data description suggests‘a

widespread severe weather event has
occurred in the study area even though
the specific severe weather report critéria

'in either 1) or 2) are not met ‘(eg a

generalized ‘entry indicating ‘' that
numerous trees were blown down and/or
large hail has occurred over ‘a Iarge
portion 'of a state or over portions of

several states).

During the March-September time perlods

+ from 1955-1993, 27 SSWEs were found

using the guidelines noted above. For
this 39 year period, the " average

‘For this project, the study area is defined
as the following states: Washington, Oregon,
Idaho, and the western portions of Montana and
Wyoming.



frequency is less than one per year.
However, in the last 13 years of that
period (1981-1993), over 50 percent of all
severe weather events were reported in
every state of the study area, and 21 of
the 27 SSWEs were identified during this
time period as well. Given this trend in
the reporting of severe weather, the data
suggest that SSWEs may occur as often
as twice per year.

The monthly distribution of SSWEs is
noted in Fig. 3. All SSWEs have
occurred during the months of April
through September. One third (9) of all
SSWEs have occurred in the month of
June followed by July and August each
having reported five SSWEs. This
indicates that SSWEs are primarily a
summer season phenomenon.

Two common synoptic patterns based on
mid- and upper-level trough orientation
were common with SSWEs:

1) Pattern A - the negative tilt pattern
2) Pattern B - the trough axis pattern

The study area was divided into two
regions when analyzing the
meteorological features associated with
SSWE development. Region 1 consists
of Idaho and the western sections of
Montana and Wyoming, with Oregon and
Washington in region 2. Pattern A is the
most common synoptic pattern associated
with SSWEs occurring in both regions (21
cases). The 6 July 1995 and 9 July 1995
cases closely resemble the characteristic
composite charts for Pattern A cases
affecting Oregon and Washington (Fig.
4).

In the study by EJ, several common
features appear to be associated with
Pattern A SSWEs. All of these cases are
associated with a trough to the west of
the study area, and a south to
southwesterly flow, at mid and upper
levels, prevails over the area of severe
weather occurrence. In addition, all
cases are associated with a shortwave
trough moving into the region and in most
situations, the shortwave trough s
negatively tilted®.

The mid- and upper-level flows are
relatively strong with a 40 to 60 knot 500
mb jet max and a 50 to 100 knot jet max
at 300 mb. Severe weather development
is typically associated with a diffluent
region at 500 and 300 mb and usually
takes place along and ahead of the
boundary layer cold front. Because of
terrain effects and general higher
elevation over the western United States,
the boundary layer cold front is most
easily identified by examining the 700 mb
thermal field (Williams, 1972) and its 12
and 24 hour changes. The front is
typically located near the tightest thermal
gradient at 700 mb.

Instability typically reaches moderate
values in the Pattern A cases with surface
based lifted index (SBLI) of -3 to -6 and
surface based Convective Available
Potential Energy (CAPE) of 1000 to 2000
Jkg”. In some cases SBLI values may be
as low as -8 with CAPE values to 2500
Jkg?. Destabilization as the result of
cooling aloft is typically not a major factor

A negatively tilted trough is one whose
axis is not meridionally oriented, but leans toward
the west with increasing latitude (Bluestein 1992).



with Pattern A cases, but is brought about
by the strong diurnal heating in advance
of the frontal boundary where surface
dew points are at least 45 degrees
Fahrenheit (F). In most cases, late night
or - early morning precipitation can
contribute to an increase in low-level
moisture, enhancing potential instability.
This late night or early morning
precipitation contributes to the vertical
distribution of moisture in the low and mid
levels of the atmosphere. In addition, a
backing upper-level flow ahead of a
negatively tilted trough in Pattern A cases
‘can contribute to the horizontal transport
of moist air from the southwestern United
States, especially during the monsoon
season (Hales 1974)

1118 The Case of 6 July 1995

The 1200 UTC upper-air data on 6 July
1995 are shown in Fig. 5. At 850 mb, a
thermal ridge extended from the Alberta-
British Columbia border southward across
western Montana, central ldaho, and the
eastern portions of Nevada. The frontal
boundary, although somewhat difficult to
detect, was defined by examining the 24
hour temperature changes at 700 mb.
This placed the location of the front from
southern British Columbia southwestward
into the Pacific Ocean along the
‘Washington and - Oregon  coasts.
Southwesterly flow aloft (500 and 250
mb) existed across Washington, Oregon,
and Idaho while ridge axes extended from
west-central Montana - southward into
central Arizona. A band of 40-50 knot
500 mb winds prevailed from northwest
California northeastward: into central
Idaho while 50-80 knot winds at 250 mb
existed across the same area. Height
falls at both 500 and 250 mb (between 40

and 70 meters at 500 mb and 60 to 100
meters at 250 mb) were noted across
southwest Oregon and northern
California which indicated the approach
of a relatively strong shortwave trough. It
is not uncommon in SSWEs to see the
existence of stronger height falls at 250
or 300 mb than at 500 mb. Thus, the 250
or 300 mb level may be more useful in
evaluating the presence of a shortwave
trough. Satellite photos (not shown)

confirmed the presence of a well-defined

shortwave trough moving into northwest
California -at 1200 UTC. Precipitation
occurred during the - overnight hours
across portions of eastern Oregon and
parts of ldaho and surface dew' points

‘across this area were greater than 45°F.

A region of surface dew points in the low
to mid- 50s existed across northeast
Oregon and the central sectlons of Idaho

Enwronmental soundmgs for Spokane
Washington (GEG) and Boise, Idaho
(BOI) ‘taken at 1200 UTC are shown in
Fig. 6. - Both soundings showed the
airmass was slightly stable with SBLIs of
+1 at BOIl and +4 at GEG. However,
moisture had increased substantially in
the past 12 hours on both soundings. An
increase in mid-level moisture on the BOI
sounding helped create an.inverted-V
structure, -a common ' thermodynamic
profile for the development of ‘dry
microburst which produce damaging
winds. While the moisture in the lower
layers of the atmosphere had increased
on the GEG sounding, the profile also
exhibited inverted-V characteristics. This
increase in moisture would enhance the
potential instability that would be realized
later in the afternoon as surface heating
occurred.



Upper-air data at 0000 UTC on 7 July
1995 are displayed in Fig. 7 and the
resulting composite chart is shown in
Fig. 8. Note that the composite chart for
0000 UTC on 7 July 1995 (Fig. 8) is
somewhat similar to the composite chart
developed by EJ for Pattern A cases
affecting Washington and Oregon (Fig.
4). The 850 mb thermal ridge extended
from southeast British  Columbia
southeastward across central ldaho and
into western Utah. The frontal boundary
(at 700 mb) had now moved eastward into
the central sections of Washington and
Oregon as well as northern California.
Southwesterly flow aloft (at 500 and 250
mb) continued to exist across the region
as the ridge axes extended from the
Alberta-Saskatchewan borders southward

across the central portions of Montana

and Wyoming. Wind speeds greater than
40 knots at 500 mb extended from
northern California northeastward into
southwest Montana. In addition, greater
than 60 knot 250 mb winds prevailed
across the western portions of Oregon.
Late afternoon surface temperatures in
advance of the 700 mb front reached into
the 80s and lower 90s across much of
eastern Washington, eastern Oregon,
and ldaho. = Meanwhile, surface dew
points greater than 45 °F existed over this
area with readings as high as 60°F in
north central ldaho. This resulted in
SBLIs as low as -6 with CAPE values
between 1000 and 2000 Jkg™ across the
extreme eastern portions of Washington
and Oregon as well as parts of |daho.
Sounding analysis at 0000 UTC for GEG
and BOl on 7 July 1995 (Fig. 9) showed
the existence of an inverted-V
environment, especially on the BOI
sounding. This enhanced the potential
for damaging downburst winds.

Severe thunderstorms, mainly producing
wind gusts between 50 and 60 knots
(although several reports of hail greater
than 3/4 inch in diameter were reported
over parts of Idaho), developed during
the afternoon hours over northeast
Oregon, southeast Washington, and
western ldaho ahead of the 700 mb front
(Fig. 1). The severe thunderstorms then
spread northeastward into portions of

~ western Montana, southeast Idaho, and

northwest Wyoming during the late
afternoon and early evening hours.

IV. The Case of 9 July 1995

The morning upper-air data at 1200 UTC
is depicted in Fig. 10. The main thermal
ridge at 850 mb was oriented farther east
than is typically observed with Pattern A
SSWEs as the axis extended from
northern Utah northeastward into eastern
Montana. However, a secondary thermal
axis was noted across the east-central
sections of Idaho extending northward
into northwest Montana. In addition, a
rather large area of extensive moisture
(dew points between 8 and 10 degrees
Celsius) covered a large part of
Washington, Oregon, ldaho, and the
western sections of Montana. Twelve
hour changes in the thermal pattern at
700 mb revealed the main frontal
boundary over the western portions of
Washington and Oregon. Southwesterly
flow aloft prevailed at both 500 and 250
mb while ridge axes at these levels
extended from the Alberta-Saskatchewan
borders southward across central
Montana, western Wyoming, and eastern
Utah. The main jet axis at 500 mb (60
knots) extended along the Pacific Coast
while a secondary jet was noted across



northwest Nevada, southeast Oregon,
and southwestern Idaho. : This resulted in
-a diffluent flow pattern over portions of
" Washington and Oregon and the northern
portions of Idaho.

A band of 90+ knot winds at 250 mb
extended from southwest Oregon into
west-central Washington. In addition,
-strong height falls of 80-100 meters were
noted at 250 mb (50-60 m at 500 mb)
over western Oregon in response.to a
shortwave trough moving onshore. The
1200 UTC soundings from GEG and BOI
(Fig. 11) showed that the moisture in the
lower levels had increased inthe past 12
hours in response to thunderstorm activity
that moved across the area during-the
nlghttlme and early mormng hours.

The OOOO UTC 10 July 1995 upper-air
.analyses are shown in Fig. 12 and'the
resultant composite chart is displayed in
Fig. 13. The resultant composite chart
from. 0000 UTC on 10 July 1995 closely
resembles the characteristic composite
chart found by EJ to produce Pattern A
SSWEs in Washington and Oregon. The
850 mb thermal ridge-axis at 0000 UTC
continued to exist across the east-central
portions of ldaho into northwest Montana.
Dew points. of 8 to 10 degrees Celsius
also persisted over the eastern portions
of Washington and Oregon; Idaho, and
the western portions 6f Montana. - The
sharpest thermal gradient at 700 mb
existed across the central sections of
Washington and Oregon indicating the
presence of the main frontal boundary.
Southwesterly flow aloft ‘at 500 ‘mb and
250 mb. continued to persist over the
region and ridge axes remained across
central Montana, western Wyoming; and
eastern Utah. The 500 mb wind fields

-econtinued to show a double structure to

the jet maxima with one axes extending
along the Washington and Oregon coasts
and another from central California into

‘northwest Nevada and southwest Idaho.

This structure indicated the presence of
diffluence aloft over - portions of
Washlngton Oregon and ldaho.

Meanwhlle a dlffluent pattern was also
noted at 250 mb as a double jet structure
also .existed. One jet axis was situated
across the .coastal sections of
Woashington, Oregon, . and' northwest
California while another jet axis extended
from central California into" northwest
Montana. The 0000 UTC soundings at
GEG and BOI'from 10 July 1995 showed
the presence of ‘moderate to strong
instability  (Fig.  14). Surface
temperatures well into the 80s and lower-
90s and surface dew points in the mid-

'50s to mid-60s greatly contributed. to

significant airmass destabilization ahead
of the approaching 700 mb front. - Based
on.the 0000 UTC 10 July 1995 soundings
from GEG and BOI, SBLls betweer -6
and <10 existed with CAPE values as high
as 3355 Jkg™'. Given the close proximity
of the GEG sounding to the most

significant severe = weather . producing

storm, the surface conditions . were
modified on the GEG sounding using
SHARP (Hart and Korotky, 1991). to
sample the thermodynamic environment
over southeast Washington where the
thunderstorm, responsible for producing
a tornado and hail up to four inches in
diameter, was moving. Inputting :the

surface data (note wind data was not

changed) from Walla Walla (ALW,
surface temperature of 90 °F and surface
dew point of 65°F) lead to the extremely
large amount of CAPE (3355 Jkg™ on the



GEG sounding, and helps to explain why
hail as large as the size of grapefruits fell
over the region.

The significant severe thunderstorms,
producing numerous reports of golfball to
grapefruit size hail, developed over north-
central Oregon by early afternoon on the
Sth and moved northeastward during the
afternoon and evening hours across
portions of northeast Oregon, eastern
Washington, western and central idaho,
and western Montana (Fig. 2).

V. Forecast Implications

From the severe weather events on the
6th and the Sth, it appears that
recognition of a Pattern A SSWE event
was very useful in determining the severe
weather potential on these two days. In
addition, examination of the
thermodynamic environment was cruciai
in recognizing the type of severe weather
expected. In the cases of the 6th and the
9th, surface dew points were in the mid-

40s to mid-50s, and mid-50s to mid-60s,

respectively. Late night and early
morning precipitation occurred over the
area on bcth days which helped increase
the depth of moisture. The vertical
advection of moisture in higher based
thunderstorm activity helped transfer the
amount of moisture from the mid levels
downward into the lower levels. This
resulted in evolving from an airmass
primarily conducive for high based
thunderstorms producing damaging winds
(on the 6th) to an environment where
storms would have lower bases and have
much greater potential instability to
produce large hail as well (on the Sth).
This was the most obvious difference

between the 6th and the 9th, as
soundings on the 6th reflected more of an
inverted-V environment over the entire
region resulting in more of a threat for
damaging microburst winds. It is noted
that the soundings on the 6th were not
characteristic of those found by EJ during
SSWEs as the depth of moisture in the
sounding is usually greater than what was
indicated on the 6th. However,
thunderstorm activity on the 7th and
especially the 8th helped increase the
vertical extent of moisture on the Sth,
especially in the eastern portions of
Washington and Oregon. SBLIs/CAPE
values on the 6th were as low as -6/1000-
2000 Jkg', respectively, while
SBLIS/CAPE values on the Sth were -6 to
-10/as high as 3355 Jkg™, respectively.

Although the dataset of EJ for Pattern A
SSWEs in Washington and Oregon
contained only four cases, the event of 9
July 1995 supports the characteristic
composite charts of synoptic and
thermodynamic conditions associated
with Pattern A SSWEs in this part of the
country (Fig. 4). The SSWE event of 6
July 1995 was not as well defined in
terms of the characteristic composite
chart for Pattern A cases in Washington
and Oregon. This may be a function of
the limited number of cases that comprise
the composite chart. However, the most
significant meteorological parameters
necessary for SSWE development was
observed over the area. In addition, the

~ environmental soundings from GEG and

BOl on the 6th exhibited a drier
environment than is typically found in
Pattern A cases. Sufficient moisture did
exist however to result in an "inverted-V"
environmental sounding which was
conducive to the numerous occurrence of



damaging winds reported on that day. As
‘noted earlier, increased spotter groups,
“heighteried - meteorological awareness,
and the addition of the WSR 88-D should
contribute to greater detailed recognition
“of more widespread severe weather
events in this part of the country. Given
that fact, a greater understanding of the
conditions that produce SSWEs will be
important to the operational forecaster
when dealing with episodes of such
magnitude.

From a national center perspective, initial
Day One convective outlook forecasts
-(from  the National- Severe- Storms
Forecast Center; NSSFC) at 0700 UTC
on both the 6th and the Sth indicated a
"slight" risk of severe.thunderstorms over
portions of the northwestern United
States. . In. both situations, the
characteristic composite. charts were
used to. help identify the potential for
severe “thunderstorms.. Given the
recognition of favorable synoptic patterns,
the degree of moisture, and the resultant
instability on the Sth, the forecast was
upgraded to indicate a "moderate" risk of
severe thunderstorms by early afternoon
across  the eastern portions of
Washington and Oregon, parts of idaho,
and. northwest .Montana. .. Severe
-thunderstorm watches: were issued in
both situations as well. .

Recognition of these SSWEs can help
differentiate between days when severe
thunderstorms. are generally isolated in
nature and occur from - high based
thunderstorms to days when longer lived,
deeper convection producing widespread
large hail, damaging winds, and possibly
tornadoes over a larger ‘area occurs.
This differentiation can also aid in the

decision to issue watches since SSWEs

have been found to produce numerous
amounts of severe weather. ‘
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Fig. 4. Mean composite chart at 0000 UTC £for Pattern A SSWEs
affecting Washington and Oregon. Dotted line denotes 850 mb
thermal ridge. Frontal boundary is position of 700 mb front. Long
dashed lines labeled H5 and H3 indicate trough axis positions at
500 and 300 mb. Thin line with arrow indicates the jet axis at 500
mb while thick line with arrow represents the jet axis at 300 mb.
Broad zigzag line shows an area of 500 and 300 mb diffluence while
500 and 300 mb ridge axes are denoted by long, north-south oriented
narrow zigzag line.
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