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/ - LIST OF FIGURES 

Figure 1: The system configuration for the NLDN from data collection to distribution of 
real-time data to users. Ground-based sensors detect the electromagnetic 
signal produced by a lightning discharge (1) and transmit salient information 
to the Network Control Center (NCC) in Tucson, Arizona via a two-way 
satellite system (2-3). This "raw" data from the remote sensors is processed 
at the NCC (4) to provide the time, location and peak current of each 
detected discharge. This processed information is sent back to the 
communications network for satellite broadcast dissemination (5) to real-time 
users (6). All this takes place within 30-40 seconds of a lightning flash (from 
Cummins 1995). 

Figure 2a: Determination of cloud-to-ground flash location when two DFs detect it. 
Solid lines represent measured azimuth of the flash; dashed lines outline the 
angular random error in azimuth measurements. Dot indicates computed 
flash location; shaded indicates area where flash probably occurred (from 
Holle and Lopez 1993). 

Figure 2b: Determination of cloud-to-ground flash location when three DFs detect it. 
Solid lines represent measured azimuth of the flash. Open circles indicate 
the three possible locations defined by three different intersections of 
azimuth vectors. The position (solid dot) that would minimize the square 
differences between measured azimuths (solid lines) and computed 
azimuths (dashed lines). Figure from Holle and Lopez 1993. 

Figure 3a: Detection of a cloud-to-ground lightning stroke by two TOA receivers. For 
a given time-of-arrival difference, the stroke that emitted the signal could be 
located anywhere along one of the branches of a hyperbola that passes 
between the two receivers and has as foci the two receiver locations (from 
Holle and Lopez 1993). 

Figure 3b: - Detection of a cloud-to-ground lightning strike by three TOA receivers. Two 
non-redundant hyperbola branches are defined whose intersection can 
define the location of the strike (open circle). Figure from Holle and Lopez 
1993. 

Figure 4: Example of a cloud-to-ground lightning strike located by two LPATS sensors 
and three IMPACT sensors. Straight lines are azimuth vectors (i.e., DF) and 
circles are the solution radii (i.e., TOA). Figure from Cummins 1995. 

Figure 5: The NLDN sensor locations within the contiguous United States. Triangles 
represent IMPACT sensors; circles represent LPATS sensors. 
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Figure 6a: The NLDN cloud-to-ground lightning detection efficiency for the contiguous 
United States. Contours indicate detection efficiency in percentage (from 
Cummins 1995). 

Figure 6b: The approximate cloud-to-ground lightning location accuracy of the NLDN 
for the contiguous United States and surrounding area. Contours indicate _ 
the uncertainty radius (in km) of a plotted lightning strike (from Cummins 
1995). 

Figure ?a: a) NLDN data for July 15, 1995 between 0500 and 0600 UTC. Positive 
strikes are indicated by plus signs, negative strikes are indicated by 
diamonds. Large circle indicates 25 mile radius surrounding KEMX. 

Figure 7b: Same as Fig. ?a except between 0500 and 0700 UTC. 

Figure 8: Special weather statement for southeast Arizona from August 13, 1995. 

Figure 9: Occultation data for KEMX at Tucson. The lighter shades of gray indicate 
regions where the 0.5 degree elevation scan of KEMX is blocked by local 
topography. 

Figure 1 Oa: Initial cloud-to-ground lightning strikes detected by the NLDN from the 
September 27-28, 1995 storm at 0515 UTC storm. 

Figure 1 Ob: Cloud-to-ground lightning strikes between 0515 and 0700 UTC as the storm 
of September 27-28 developed and strengthened. 

Figure 1 Oc: Cloud-to-ground lightning history between 0800 and 0830 UTC during the 
time of the heaviest rainfall in Tucson. 

Figure 11: Composite reflectivity product from KEMX for September 27-28, 1995 at 
0530 UTC. 

Figure 12a: The 0.5 degree base reflectivity for KEMX. Depicted is the initiation phase 
of the tropical squall line at 2128 UTC August 19, 1995 

Figure 12b: Same as in (a) except for 0036 UTC. Mature phase of the tropical squall 
line. 

Figure 13a: (a)Negative flashes for the two hour period ending at 0000 UTC August 20, 
1995 with contoured flash density (km2hr1

). Figure (a) through (f) shows 
the history of cloud-to-ground flashes for the August 19, 1995 storm. 

Figure 13b: Same as in (a) except ending at 0200 UTC. 
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/--, Figure 13c: Same as in (a) except ending at 0400 UTC. 

Figure 13d: Positive flashes for the two hour period ending at 0000 UTC August 20, 1995 
with contoured flash density (km2hour1

). 

Figure 13e: Same as in (d) except ending at 0200 UTC. 

Figure 13f: Same as in (d) except ending at 0400 UTC. 

Figure 14a: Composite reflectivity from KEMX on September 27-28, 1995 at 0530 UTC 
showing the poor coverage of storms developing to the southwest in Mexico. 

Figure 14b: Cloud-to-ground lightning data from the September 27-28, 1995 splitting 
supercell thunderstorms between 0515 and 0615 UTC. 

Figure 15a: Composite reflectivity from KEMX on September 27-28, 1995 at 0630 UTC 
showing improved coverage of storms as they moved closer to the radar. 

Figure 15b: Cloud-to-ground lightning data from the September 27-28, 1995 splitting 
supercell thunderstorms between 0515 and 0700 UTC. 

Figure 16: The 500 mb chart for 1200 UTC November 15, 1995 from Daily Weather 
Summary. 

Figure 17: Lightning History for the low topped thunderstorms that occurred on 
November 15, 1995. 

Figure 18: Depiction of NLDN cloud-to-ground lightning data coverage into Mexico. 

Figure 19a: Depiction of NLDN cloud-to-ground lightning data coverage on the national 
scale. Data depicted is from August 2, 1995. 

Figure 19b: The surface analysis from Daily Weather Summary for August 2, 1995 at 
1200 UTC. 

Figure 20a: Composite of cloud-to-ground lightning strikes across southeast Arizona for 
the period August 1 to August 11 , 1995. 

Figure 20b: Same as in (a) except August 11 through August 21, 1995. 

Figure 20c: Same as in (a) except August 21 through September 1, 1995. 
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Figure 21: Average number of cloud-to-ground lightning strikes per square kilometer 
per year for an eight year period (1987-94) for the months of June through 
September for Arizona (Lopez et al. 1996). 

Figure 22a: Monthly precipitation contours for July 1995 (preliminary analysis produced 
by the Office of the State Climatologist). 

Figure 22b: Number of cloud-to-ground lightning strikes and lightning strike density 
contours in flashes per square kilometers for July 1995 across southeast 
Arizona. 
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/ Operational Applications of the Real-Time National Lightning 
Detection Network Data at the NWSO Tucson 

Darren McCollum, David Bright, Jim Meyer and John Glueck 
NWSO Tucson, AZ 

ABSTRACT 

Real-time data from the National Lightning Detection Network (NLDN) were used in the 
operational setting at the NWSO at Tucson, Arizona since February of 1995. A summary 
of the utility of real-time lightning data at Tucson is presented. The operational staff found 
lightning data to be useful for concise briefings of convective events already occurring. 
Consensus was that lightning data filled in the gaps that are inherent in the time and space 
resolutions of the WSR-880 at Tucson and GOES satellite imagery. Lightning data were 
used for backup power decisions, improved public safety information, to mitigate the effects 
of radar beam blockage, analyze storm structure, monitor low topped convection, observe 
thunderstorms in Mexico and summarize national lightning activity. Analysis of lightning 
data from the monsoon season in 1995 clearly showed the monsoon season progression 
of convective systems across southeast Arizona as well as the cloud-to-ground lightning 
hot spots for the season. Lightning data are compactly stored and allow a quick 

_ assessment of the overall convective season, convective outbreaks and the ability to 
identify individual storm systems of interest for study. Also, it is proposed that seasonal 
averages of lightning data can be used in conjunction with sparse rainfall data across 
southeast Arizona to improve rainfall estimates. 

1. INTRODUCTION 

Since February of 1995, real-time 
National Lightning Detection Network 
(NLDN) data have been used in the 
operational setting at the NEXRAD 
Weather Service Office (NWSO) in 
Tucson, Arizona. Access to real-time 
cloud-to-ground (CG) lightning data was 
made through a special arrangement with 
Global Atmospherics Inc. (GAl) of 
Tucson, Arizona which is responsible for 
managing the NLDN. 

The NLDN has provided lightning data 
covering the continental United States 

1 

since 1989. Using observations gathered 
from 105 sensors distributed throughout 
the continental United States, the NLDN 
provides both real-time and archived 
lightning data to commercial and 
government users. The basic system 
configuration of the NLDN is shown in 
Fig. 1. Ground-based sensors detect the 
electromagnetic signal produced by a 
lightning discharge (1) and transmit 
salient information to the Network Control 
Center (NCC) in Tucson, Arizona via a 
two-way satellite system (2-3). This "raw" 
data from the remote sensors is 
processed at the NCC (4) to provide the 
time, location and peak current of each 



detected discharge. This processed 
information is sent back to the 
communications network for satellite 
broadcast dissemination (5) to real-time 
users (6). All this takes place within 30-
40 seconds of a lightning flash (Cummins 
et al. 1995). The NLDN provides the 
most reliable and technologically 
advanced lightning detection data 
commercially available on a real-time 
national basis. 

In the sections that follow, various 
aspects of the NLDN real-time lightning 
data are summarized and discussed. 
Section 2 presents a brief background of 
lightning detection systems. The history 
of the NLDN is summarized in Section 3. 
In Section 4 the lightning detection 
efficiency and location accuracy of the 
NLDN are presented. The remaining 
sections describe how real-time CG 
I ightning data have been used at the 
NWSO at Tucson to supplement WSR-
880 observations/operations, improve 
mesoscale forecasting and enhance 
public safety. The general uses of NLDN 
data as expressed by forecasters at the 
NWSO Tucson are summarized in 
Section 5. Section 6 discusses the 
specific ways in which NLDN data have 
been applied in the operational setting. 
In Section 7, the potential uses of 
lightning data on station for local 
climatological studies and research are 
presented. 

2. LIGHTNING DETECTION 

Lightning detection systems are designed 
to detect the electromagnetic signal that 
is produced when a lightning flash 
occurs. Incoming electromagnetic signals 
are continuously analyzed by receivers to 
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determine if a CG lightning flash has 
occurred (Cummins et al. 1995; Holle and 
Lopez 1993). Computer algorithms are 
used to discriminate between CG and 
non-CG lightning flashes. The NLDN is 
designed to retain CG flashes only 
(Cummins et al. 1992; Maier 1991 ). 

When a CG lightning flash is identified, 
its location must be determined. The 
NLDN has used Direction-Finding (DF), 
Time-Of-Arrival (TOA) and a combination 
of DF/TOA technologies at various times 
in its history. 

D·irection-Finding (DF) methods 
incorporate cross-loop antennas to detect 
the electromagnetic signal emitted by a 
lightning flash. Each antenna consists of 
two vertical loops perpendicular to each 
other oriented north-south and east-west. 
The horizontal azimuth vector of a 
lightning flash relative to an individual 
antenna can be computed from the 
current induced in the cross-loop 
antenna. The location of a CG lightning 
flash is then approximated by 
triangulating the computed azimuth 
between two or more DF antennas (Fig. 
2a and b). The company Lightning 
Location and Protection, Inc. (LLP}, now 
part of GAl of Tucson, Arizona, is the 
primary producer of DF systems. Before 
1994, the NLDN used DF systems only. 
For a more in-depth discussion of DF 
systems refer to Holle and Lopez (1993). 

Time-of-arrival (TOA) methods detect 
differences in the arrival time of the 
electromagnetic signal produced by a 
lightning flash. Each antenna detects the 
signal produced by a lightning flash and 
assigns a time-of-arrival to the peak 
amplitude of that signal. The antenna 



/,.,....-- receiver must be synchronized to a 
dependable time standard such as the 
Global Positioning System (GPS). The 
difference in time-of-arrival between each 
antenna pair is computed and defines a 
branch of a hyperbola anywhere along 
which a CG flash could be located (Fig. 
3a). A minimum of three antennas, 
placed within 200-400 km of one another, 
are required to determine the location of 
a lightning flash. For two pairs of 
antenna the point at which hyperbola 
branches intersect (i.e., the solution for 
both hyperbolas) is the location at which 
the CG flash occurred (Fig. 3b). The 
company Atmospheric Research 
Systems, Inc. (ARSI) now also of GAl, is 
the primary manufacturer of TOA 
systems. The lightning detection network 
called Lightning Position and Tracking 
System (LPATS) uses TOA technology. 
For further reading on TOA systems, refer 
to Holle and Lopez (1993). 

More recently, GAl engineered a "hybrid" 
I ightning detection system called 
Improved Performance from Combined 
Technology (IMPACT) which uses a 
combination of both OF and TOA 
methods. For a given CG lightning flash, 
each IMPACT sensor provides a 
horizontal azimuth vector pointing toward 
the CG flash (DF) and the time it took a 
signal to propagate from its origin to the 
sensor which is used to define a range 
circle (TOA). For a group of sensors, the 
solution that causes all horizontal azimuth 
vectors and range circles to intersect 
(achieved through iterative computations) 
is the approximate location of the flash 
(Fig. 4). The IMPACT system produces 
redundant lightning location information 
and allows a more precise determination 
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of lightning location than OF or TOA 
systems alone (Cummins et al. 1995). 

3. HISTORY 

The NLDN began as a research program 
at the State University of New York at 
Albany (SUNY A). The initial network was 
comprised of 1 0 lightning sensors along 
the east coast of the United States 
(Orville et al., 1983). The electric utility 
industry realized the potential value of 
CG lightning data and funded an 
expansion of the "SUNYA Network" 
through the Electric Power Research 
Institute (EPRI) of Palo Alto, California. 
EPRI is a cooperative research branch of 
the electric utility industry which 
commissions research projects around 
the United States to improve the 
efficiency of electric power companies. 
By 1990, the "SUNYA Network" was 
combined with lightning detection 
networks operated by the Bureau of Land 
Management (BLM) and the National 
Severe Storms Laboratory (NSSL) in 
Norman, Oklahoma (Orville 1990) and 
encompassed the contiguous United 
States. 

During 1991, due to increasing demand 
for lightning detection data, LLP, and 
EPRI formed Geomet Data Services 
(GDS) which was made responsible for 
the management, operation and 
maintenance of the NLDN. GDS oversaw 
the installation of 34 new DF systems in 
the western United States during the 
summer of 1992 which eliminated the 
reliance on the lightning sensors 
operated by the BLM. 

In 1993, GDS was making plans for 
further upgrades and experimented with 



the IMPACT sensors in parts of the 
NLDN, demonstrating significant 
improvement in lightning location 
accuracies (Cummins et al., 1995). The 
NLDN was officially upgraded in 1994 by 
combining the 34 IMPACT sensors and 
65 LPATS sensors. Figure 5 shows the 
outlay of the combined networks. Today 
GDS, LLP, and ARSI form GAl, owned by 
the Sankosha Corporation of Japan. 

4. NLDN LIGHTNING DETECTION 
EFFICIENCY AND ACCURACY 

Lightning detection efficiency is the 
percentage of actual CG lightning flashes 
that are detected. Various experiments 
have been undertaken using multiple 
video cameras to estimate the detection 
efficiency of the NLDN. This research 
supported a NLDN flash detection 
efficiency of approximately 70 to 80 
percent (Fig. 6a) within the contiguous 
United States (Cummins et al. 1995). No 
lightning detection system is capable of 
detecting 1 00 percent of lightning flashes 
and the detection efficiency of the NLDN 
can vary significantly between storms. 
This is especially true for flashes that 
occur at the periphery of detection 
networks, when a flash is not surrounded 
by antennas and/or when a portion of the 
network is not functioning properly. 
However, the experience at Tucson 
suggests that, in general, the detection 
efficiency of the NLDN is more than 
adequate for meteorological purposes. 

The location accuracy of the NLDN is a 
measure of the confidence that a 
detected CG lightning flash occurred 
within a specific distance of the plotted 
position. The results of rocket triggered 
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lightning experiments and multi-camera 
observations of thunderstorms have been 
used to estimate the location accuracy of 
the NLDN (Cummins et al., 1995). The 
results of these experiments suggest that 
50 percent of detected lightning flashes 
are located within 0.5 km of a plotted 
position (Fig. 6b ). Once again network 
performance and strikes near the edge of 
networks experience more uncertainty but 
real-time usage in Tucson suggests that 
the location accuracies stated by GAl are 
reliable. 

5. GENERAL USAGE OF NLDN 
REAL-TIME LIGHTNING DATA AT 
TUCSON 

A. SURVEILLANCE 

i. Rapid Assessment of Thunderstorm 
Events 

The operational staff at Tucson found the 
real-time NLDN data to be an 
indispensable tool for the quick 
assessment of the thunderstorm 
environment across southeast Arizona. 
Several loops of the real-time lightning 
data allowed a forecaster to identify 
where thunderstorms were forming, 
dissipating, moving, the location of 
updrafUdowndraft regions and the 
probable degree of mesoscale 
organization (Holle et al. , 1994; Watson 
et al. , 1991; Lopez et al., 1990; Mosher 
1989; Lopez et al., 1989). It provided a 
separate time and space scale on which 
to visualize the overall storm evolution. 
Such a rapid assessment is not possible 
with the WSR-880 Doppler weather radar 
at Tucson (KEMX) since the presence of 
thunderstorms is necessarily inferred and 



/ ,, requires more in-depth analysis of the 
data. During the 1995 summer monsoon 
season in Arizona the lightning data 
facilitated concise briefing of operational 
staff coming on shift or called in during 
severe thunderstorm events and was 
usually the first choice for a quick storni 
summary in such situations. 

ii. Supplement to Areal Coverage of 
KEMX 

The NLDN lightning data were a critical 
supplement to the areal coverage of 
KEMX in several ways. Thunderstorms 
that were located beyond the range limits 
of KEMX (e.g., thunderstorms located in 
Mexico) were easily monitored and 
usually first identified by lightning data. 
The real-time lightning data allowed·· 
forecasters to track thunderstorms as 
they moved into and out of the range 
coverage of KEMX. Low topped 
thunderstorms below the radar beam that 
occurred during the winter were easily 
identified. Lightning data allowed 
continuous surveillance . when 
thunderstorms moved through or 
developed within the cone of silence (a 
20 to 30 km radius surrounding the radar 
where the beam angle is too low to fully 
detect storms) of KEMX. Finally, data 
voids caused by gaps in KEMX coverage 
due to beam blockage were filled in with 
I ightning data during convective events.· 
The NLDN data provided · an extra 
dimension of observation and provided a 
means to fill the apparent gaps in KEMX 
coverage on time and space scales of 
similar length. Specific instances of 
these general observations are discussed 
in Section 6. 
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iii. Superior Time Resolution 

With the pulse and discontinuous nature 
of thunderstorms during the summer 
months in southeast Arizona, significant 
changes between volume scans of KEMX 
often occurred. GOES-? imagery 
provided an important look at these 
storms but once again the time resolution 
was less than satisfactory. Real-time 
lightning data provided the best time 
continuity and the tracking of storms 
within the time gaps present in the other 
sources of storm scale information. In 
such situations, and in the future National 
Weather Service where mesoscale 
forecasting will be the main focus, the 
NLDN lightning data fills gaps in 
coverage caused by the poorer time 
resolution of KEMX and satellite data as 
well as lightning data products currently 
available on AFOS. 

B. DETAILED COVERAGE WHEN 
KEMX IS OUT OF SERVICE 

When KEMX was turned off for 
maintenance, transitioning to backup 
power or an unexpected failure occurred, 
the Phoenix WSR-88D Doppler radar 
(KIWA), was the primary: backup. In 
these situations radar coverage in 
southeast Arizona was far from complete. 
Real-time lightning data provided a 
reliable secondary source of storm scale 
information when KEMX was down. 
Especially during summer monsoon 
(Douglas et al., 1993) convective events, 
when KEMX was out of service, lightning 
data were used in concert with satellite 
data as an effective surrogate to radar 
coverage. Should a major component of 
KEMX become disabled, it could 
potentially take days before the radar is 



brought back into full service. The 
satellite and lightning data in combination 
could prove to be a valuable resource, 
especially in the western states where 
poor radar backup coverage prevails. 

6. SPECIFIC APPLICATIONS 

A. BACKUP POWER DECISION FOR 
KEMX 

Since February 1995 the operational staff 
at the NWSO Tucson used NLDN real­
time lightning data to detect 
thunderstorms developing near or 
approaching KEMX at Tucson. A case in 
point occurred during the 1995 monsoon 
season on the evening of July 15, 1995 
(Figs. 7 a and 7b ). Thunderstorm activity 
was rapidly dissipating over extreme 
southeast Arizona at 0600 UTC (Fig. 7a). 
However, an outflow boundary generated 
by this area of storms moved across the 
RDA site at about 0630 UTC and 
triggered a few isolated, high based 
thunderstorms (bases approximately 
12,000 feet above ground level) within 
the cone of silence of KEMX (Fig. 7b). 
Likewise, during the daytime hours of the 
monsoon season, thunderstorms often 
developed within the cone of silence of 
KEMX with little or no warning. 

The WSR-88D is crucial to the warning 
and forecast process. The WSR-88D is 
indispensable in analyzing severe and 
significant weather situations. Weather 
statements and advisories, aviation 
forecast products and virtually all short­
term forecasts benefit from the analysis of 
the WSR-88D data. Considering the less 
than optimal power grid serving the area 
where the KEMX radar is sited, the Unit 
Radar Committee (URC) established the 
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requirement that the Unit Control Position 
(UCP) operator is to switch from 
commercial to generator power whenever 
there is a thunderstorm within 25 miles of 
KEMX. The NLDN data is the primary 
tool to determine when this condition has 
been met. 

At the NWSO Tucson, the real-time 
lightning data display software (called 
THUNDER) is configured to produce a 
series of beeps whenever a CG lightning 
flash is detected within 25 miles of the 
radar. Real-time lightning data made the 
backup power decision by the operational 
staff more timely and less stressful. 

B. PUBLIC SAFETY 

The NLDN lightning data provide the 
potential for more lead time in notifying 
the public of approaching thunderstorms 
and allow more descriptive 
enhancements of nowcasts and special 
weather statements. On several 
occasions since February 1995, 
especially during the monsoon, NLDN 
lightning data provided the first 
confirmation that a thunderstorm had 
developed and that CG lightning was 
occurring. The example from July 15, 
1995 (see Figs. 7a and 7b) is a case in 
point when an area of weak and isolated 
thunderstorms containing occasional CG 
lightning eventually moved into the 
Tucson Metropolitan area. 

Innocuous thunderstorms are perhaps the 
most dangerous in terms of lightning 
safety (Holle et al., 1993). During these 
types of storms, lightning is infrequent 
and can go unobserved over populated 
areas, especially during daylight hours. 
The real-time lightning data provided an 



extra tool on which to base special 
weather statements and nowcasts. An 
example of how lightning data was used 
to enhance descriptions is shown in a 
Special Weather Statement issued on 
August 13, 1995 (Fig. 8 ). In this case, 
unexpected thunderstorms developed. 
over a region of deep outflow generated 
hours earlier. 

The real-time lightning data facilitates the 
writing of proactive and specific 
statements about the present and near 
future characteristics of thunderstorms. 
This facilitates the effective 
communication of storm related details to 
the public. 

C. BEAM BLOCKAGE 

The site location of KEMX was chosen to 
optimize radar coverage over as much of 
the County Warning Area (CWA) in 
southeast Arizona as possible. However, 
due to mountainous terrain, the coverage 
of KEMX is inadeq~_Jate. Figure 9 shows 
the beam occultation for KEMX due to 
surrounding mountains and indicates the 
regions in southeast Arizona that are not 
well covered at the lowest elevation 
angles. In the regions of southeast 
Arizona where terrain blockage knocks 
out the lowest elevation angles, real-time 
NLDN data are useful in identifying and 
roughly tracking the development of 
storms in these regions. The NWSO in 
Tucson has assisted the NWSFO in 
Phoenix using NLDN data in cases 
involving some of their more remote or 
high terrain areas. 

An example of elevation angle blockage 
occurred on September 27-28, 1995. 
Thunderstorms formed in northern Mexico 
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and moved northward into southern Pima 
County. Three plots of NLDN lightning 
data (Figs. 1 Oa, 1 Ob, and 1 Oc) show first 
the initial CG lightning strikes detected in 
northern Mexico (Fig. 1 Oa), then 
extensive lightning activity as the 
thunderstorms moved into southern 
portions of the CWA (Fig. 1 Ob). Figure 
1 Oc shows the high resolution detail as 
these storms move through populated 
areas. The KEMX composite reflectivity 
graphic (Fig. 11) corresponding with the 
time that storms were first beginning to 
form over northern Mexico shows no 
indication of storms (compare to 
Fig. 1 Oa). The approaching storms 
moved along a radial that suffers from 
beam blockage at the lowest elevation 
(see Fig. 9). The NLDN loop clearly 
showed what was happening, confirmed 
later by the lower time resolution satellite 
data. The NLDN data allowed the 
forecaster to have the longest lead time 
possible and the public was well served. 

D. STORM TENDENCIES AND 
STRUCTURE 

Real-time lightning data provides a nearly 
instantaneous indication of storm 
tendencies and cycles, including the 
initiation and dissipation of convection 
(Holle et al., 1994; Stolzenburg 1994; 
Watson et al., 1991; Lopez et al., 1990; 
Mosher 1989; Lopez et al., 1989). The 

. update rate of real-time lightning data 
supplied by the NLDN surpasses all other 
meteorological data currently available at 
NWSO Tucson including satellite, surface 
observations, Automated Local 
Evaluation in Real-Time (ALERT) rain­
gage data, and even WSR-88D data. 
The two cases that follow demonstrate 
the applicability of real-time lightning data 



to the short term forecast and warning 
operations of NWSO Tucson. 

i. August 19, 1995: Organization and 
dissipation of a tropical squall line. 

During the period 2000 - 2300 UTC 19 
August 1995, thunderstorms primarily 
rooted over the higher terrain of 
southeast Arizona, began to organize into 
a mesoscale convective system (MCS) 
from central Arizona to northern Sonora, 
Mexico. These storms developed into 
what could be considered a tropical 
squall as described by Smith and Gall 
(1989). Figures 12a and 12b show the 
base reflectivity from KEMX at 2128 UTC 
19 August 1995 during the development 
phase, and at 0036 UTC 20 August 1995 
during the mature phase of the MCS, 
respectively. 

A closer look at the lightning activity over 
the NWSO Tucson county warning area 
is shown in Figs. 13 (a -f). In Figs. 13 (a 
-c) are the negative flashes (km-2 hr-1

) for 
the 2 hour periods ending at 0000, 0200 
and 0400 UTC, respectively. At 0000 
UTC, two areas of lightning activity are 
shown: the first over the southeast corner 
of Arizona representing redevelopment of 
convection (mainly over higher terrain) 
behind the MCS; and the second area 
associated with the MCS extending from 
just west of Globe, Arizona (GLB) to just 
west of Tucson to around Nogales, 
Arizona (NGL). By 0200 UTC, the 2 
hourly lightning rates have increased and 
become more solid over much of central 
and eastern Pima County. And by 0400 
UTC, the 2 hourly rates decreased rapidly 
as the MCS dissipated with little new 
negative CG lightning activity noted. 
Similarly, shown in Figs. 13 ( d - f) are the 
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positive flash rates (km-2 hr ) for the 
same time period. Note the evolution of 
the positive flashes, developing primarily 
from north to south during the period. 
Over the NWSO Tucson CWA, 2 hourly 
positive flash density rates increase in 
the 0200 and 0400 UTC time frames as 
the MCS dissipated (Fig. 13e and f). it 
appears that the charge of the lightning 
may aid real-time operational analysis of 
convective situations by providing 
information on the maturity of the 
convective system, specifically as 
positive flashes occur when precipitation 
evolves from predominantly convective to 
predominantly stratiform (Holle et al. 
1994; Stolzenburg 1994; Houze 1993; 
Lopez et al. 1990). 

ii. September 27-28, 1995: Nocturnal 
Thunderstorm Development over 
Northern Mexico 

Supercell thunderstorms are a rare 
occurrence in Arizona. This can be 
inferred from the low frequency of very 
large hail and/or significant tornadoes 
reported in the climatological records. 
However, during the late evening hours of 
September 27, 1995, thunderstorms 
developed rapidly over northern Mexico 
in an unstable environment favorable for 
potential supercell formation. 
Approximately 50 knots of unidirectional 
wind shear existed within the lowest 5 km 
of the atmosphere, a sufficient condition 
for supercell thunderstorms (Weisman 
and Klemp 1982). Meanwhile, a weak 
upper-level trough was forecast to 
approach southern Arizona during the 
night. Numerical guidance was generally 
poor at suggesting to the forecasters that 
a potential for thunderstorms existed that 
night. Thus, their development was 



generally considered a surprise to the 
forecasters at the NWSO Tucson. 

The NLDN lightning data provided the 
first indication that storms developed (as 
discussed in Section 6C) and more 
importantly that storms had developed 
over northern Mexico. The KEMX radar 
was initially deficient in the storm 
detection due to the distance of the 
storms from the radar, since the lowest 
elevation angle critical for distant storm 
detection are completely blocked by 
terrain to the southwest. Figure 14a 
shows the composite reflectivity at 0530 
UTC on September 28, while Fig. 14b 
shows the one hour lightning activity 
between 0515 and 0615 UTC. The 
eastern cluster of lightning is 
disorganized and is clearly associated 
with the 50 dBz returns south of Nogales, 
Arizona. However, the western cluster of 
lightning shows splitting storm cell 
organization but the maximum reflectivity 
is only 20 dBz due to the terrain 
blockage. In Figs. 15a and 15b are the 
corresponding radar and lightning 
detection images one hour later as the 
storms were moving into southern 
Arizona. Thunderstorms possessing 
cores with reflectivities greater than 60 
dBz were being detected by KEMX at 
0629 UTC, but note how nicely the 
lightning complimented KEMX by showing 
the tendency for storms to split during this 
event. However, due to the lowest 
elevation angle remaining blocked by the 
terrain, KEMX algorithms were still 
operating at a degraded level and did not 
indicate a mesocyclone. Storm 36 soon 
produced baseball sized hail (spotter 
report and later verified) as it moved into 
southern Arizona. 
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E. LOW-TOP CONVECTION 

The real-time NLDN data can be very 
useful in low-topped convective 
outbreaks. A specific example occurred 
on November 15, 1995. At 1200 UTC on 
November 15, 1995, a cut-off low was 
located across northern Baja California 
and the Sonoran district of northwest 
Mexico (Fig. 16). This cut-off low 
continued to move slowly east to just 
south of Nogales, Arizona through 0000 
UTC Wednesday afternoon. The cut-off 
low produced a moderately unstable 
atmosphere favorable for the 
development of weak thunderstorms 
especially south of Douglas, Arizona. 

KEMX experiences beam blockage in the 
lowest elevation angles over southern 
Cochise County (see Fig. 9). This is most 
evident with low-topped convection. Tops 
in this case were lower than 25,000 feet 
and KEMX was not able to detect them. 
No useful information, related to these 
low top storms, was available via radar! 
Infrared satellite imagery showed that 
clouds were developing over the region 
but whether those clouds contained 
thunderstorms was not clear. Any 
information concerning thunderstorm 
activity is especially critical to aviation 
where even weak high based storms can 
have an extreme impact. With the use of 
real-time NLDN lightning data (Fig. 17), 
thunderstorms were quickly and 
unambiguously identified. This allowed 
the timely update of the southeast 
Arizona zone, terminal and flight route 
forecasts for Douglas. The NLDN. data 
took speculation out of the decision 
process and improved service to National 
Weather Service customers. 



F. MEXICAN DATA COVERAGE 

Presented in Fig. 18 is a regional 
depiction of the lightning activity 
associated with the MCS described in 
Section 6D. The lightning shows 
convective organization from central 
Arizona through southern Arizona into 
Sonora, Mexico. This figure serves to 
demonstrate two important features 
associated with operational application of 
real-time lightning detection. First, real­
time lightning data provides another tool 
for the meteorologist to use in 
assimilating the synoptic and mesoscale 
state of the atmosphere. Second, with no 
radar data available over Mexico (nor the 
surrounding coastal waters of the United 
States), real-time lightning data provides 
information on convection over remote 
areas. Detection efficiency and location 
accuracy decrease away from the 
contiguous United States borders (as 
discussed in Section 4), but Fig. 18 
illustrates that it still provides useful 
information in regions of decreased 
detection efficiency. Thus, the only real­
time data available from Mexico is 
satellite imagery, and in convective 
situations these pictures are often 
obscured by high cloudiness. Frequently, 
real-time lightning data are the only data 
confirming convective development over 
Mexico. The case of September 27-29, 
1995 in Section 6D provides an excellent 
example of this. 

G. NATIONAL COVERAGE 

Real-time lightning data provided the staff 
at NWSO Tucson with convenient and 
concise national coverage of convection 
around the United States. These data 
help simplify the national convective 
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picture for forecasters and 
hydrometeorological technicians, despite 
the availability of other data such as that 
from KEMX. Rather than using the 
coarse lightning data product available on 
AFOS (NMCGPHLDS), one glance at the 
national NLDN map provides a snap-shot 
of convective activity around the country. 
This is demonstrated in Figs. 19a and 
19b. In Fig. 19a are lightning strikes for 
the 6 hour period ending on August 3, 
1995 at 0000 UTC while in Fig. 19b is the 
daily surface weather map from August 
2, 1995 at 1200 UTC. Convection along 
a stationary front through the central part 
of. the United States is clearly defined, as 
is a band of convection along and ahead 
of the cold front moving through the 
Northern Plains, convection associated 
with a tropical storm over Florida, and 
widely scattered thunderstorms over the 
Intermountain region. Note how quickly 
the NLDN national map provides the 
forecaster with real-time detail regarding 
the convective situation around the 
country, complimenting the surface 
analysis while simplifying weather 
briefings to meteorologists and 
customers. 

7. RESEARCH APPLICATIONS AND 
CLIMATOLOGY 

Lightning data has provided the staff at 
NWSO Tucson with another dataset for 

·the post-analysis of significant weather 
events. Examples of this application 
have been demonstrated in Section 6. 
The following research applications are 
more general, and illustrate potential 
long-term applications for lightning data. 



/ A. CLIMATOLOGY 

Typically, the monsoon over Arizona 
begins by the middle of July and lasts into 
September (See Maddox et al., 1995 
Section 2b for a climatological discussion 
of the monsoon over Arizona). However, 
the monsoon of 1995 was late with 
minimal activity over Arizona until August. 
It wasn't until nearly the middle of August 
that widespread convective precipitation 
occurred on a near-daily basis. Figures 
20 (a- c) illustrates the point showing 10-
day composite lightning strikes 
(contoured at 0.5 flashes km-2

) over most 
of the NWSO Tucson CWA. In Fig. 20a 
are lightning strikes for the period 0000 
UTC August 1 through 0000 UTC 
August 11, 1995. Note that flash 
densities are generally below 0.5 flashes 
km-2 over most of the area, with the 
exception of three localized maxima over 
southern Arizona, most notably near 
Nogales (NGL). But, during the next 10-
day period (0000 UTC August 11 - 0000 
UTC August 21, 1995) shown in Fig. 20b, 
flash densities dramatically increased 
over the entire area with a large region in 
excess of 0.5 flashes km-2

, and a few 
pockets in excess of 2 flashes km-2

. The 
final 1 0-day period of August (0000 UTC 
August 21 - 0000 UTC September 1 , 
1995) shows less activity (Fig. 20c) than 
the middle of the month, but considerably 
more widespread activity than the first 1 0 
days of the month. In this case, 
compositing the lightning strikes over 
southern Arizona helps depict the 
evolution of the monsoon during the 
month of August. 

Compositing can be done seasonally, as 
discussed above, or annually as shown in 
Fig. 21 (courtesy of Raul Lopez and Ron 
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Holle, NSSL). Figure 21 provides a 
concise indicator of the annual lightning 
flash density over the state of Arizona for 
June through September for an 8 year 
period (1987 -94). The flash density is 
maximized along the Mogollon Rim over 
east central Arizona, with a secondary 
maximum over southeast Arizona. 

B. CONVECTIVE 
INDICATOR 

RAINFALL 

Lightning data could be used as another 
tool to aid in the estimation of rainfall 
over data sparse locations. During the 
summer months in Arizona, nearly all 
rainfall is convective in nature. Watson 
et al. (1994) showed that in Arizona 
during the months of June through 
September there is good correlation 
between the number of CG strikes 
observed within a 400 km2 area 
surrounding a particular rain gage and 
the number of days where measurable 
rain was received at each rain gage. So 
there probably is at least some 
correlation between lightning flash 
density and rainfall accumulations; 
however, the authors are unaware of any 
documentation which attempts to quantify 
CG vs. rainfall relationships. 

Figure 22a shows the preliminary 
analysis of July 1995 rainfall over the 
state of Arizona as provided by the Office 
of the State Climatologist in their 
publication Arizona Climate Summary. 
These data are considered preliminary as 
the purpose of the publication is to 
provide an early summary of the past 
month's weather. Since timeliness is 

. critical, frequently only the first order 
weather observing stations are used in 



their analyses. Figure 22a shows that 
Douglas received 3.22 inches of rain 
(0.19 inches below normal) while about 
75 miles to the west, Nogales only 
received 0.33 inches for July, 1995 (4.62 
inches below normal). The objective 
analysis routine used to contour the 
analysis shows a nearly linear change in 
departure from normal between Nogales 
and Douglas, with the 2 inch below 
normal contour approximately between 
Douglas and Nogales. However, the 
lightning data composited for the month 
of July (Fig. 22b) indicates two maxima in 
the flash density over southern Arizona: 
one just north of Douglas, and a second 
of equal magnitude approximately half 
way between Douglas and Nogales (this 
second maximum is over the Huachuca 
mountains). The maximum just north of 
Douglas correlates well with the 
precipitation maximum in the region 
reported from the Douglas observation 
site. However, it is likely that another 
precipitation maximum exists between 
Douglas and Nogales in the vicinity of the 
Huachuca Mountains, in the area of the 
equally strong second CG lightning 
maximum. 
The intent here is not to criticize the 
preliminary analysis, but rather illustrate 
the potential of lightning data as an aid in 
timely precipitation estimation over data­
void regions. 
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Figure 1: The systems configuration for the NLDN from data collection to distribution of real­
time data to users. Ground-based sensors detect the electromagnetic signal produced by a 
lightning discharge (1) and transmit salient information to the Network Control Center (NCC) in 
Tucson, Arizona via a two-way satellite system (2-3). This "raw" data from the remote sensors 
is processed at the NCC (4) to provide the time, location and peak current of each detected 
discharge. This processed information is sent back to the communications network for satellite 
broadcast dissemination (5) to real-time users (6). All this takes place within 30-40 seconds of a 
lightning flash (from Cummins 1995). 
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Figure 2a: Determination of cloud-to-ground flash loction when two 
DFs detect it. Solid lines represent measured azimuth of the flash; 
dashed lines outline the angular random error in azimuth 
measurements. Dot indicates computed flash location; shaded 
indicates area where flash probably occurred (from Holle and Lopez 
1993). 
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Figure 2b: Determination of flash location when three DFs detect it. 
Solid lines represent measured azimuths of flash. Open circles 
indicate the three possible locations defmed by three different 
intersections of azimuth vectors. The position (solid dot) that would 
minimize the square differences between measured azimuths (solid 
lines) and computed azimuths (dashed lines). From Holle and Lopez 
1993. 
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Figure 3a: Detection of a cloud-to-ground lightning stroke by two 
TOA receivers. For a given time-of-arrival difference, the stroke 
that emitted the signal could be located anywhere along one of the 
branches of a hyperbola that passes between the two receivers and 
has as foci the two receiver locations (from Holle and Lopez 1993). 
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Figure 3b: Detection of a cloud-to-ground lightning stroke by three 
TOA receivers. Two non-redundant hyperbola branches are defined 
whose intersection can defme the location of the stroke (open circle). 
From Holle and Lopez 1993. 



Figure 4: Example of a lightning stroke located by two LPATS 
sensors and three IMP ACT sensors. Straight lines are azimuth 
vectors (i.e., DF) and circles are the solution radii (i.e., TOA). 
Figure from Cummins 1995. 

Figure 5: The NLDN sensor locations within the contiguous 
United States. Triangles represent IMPACT sensors; circles 
represent LP ATS sensors. 
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Figure 6a: The NLDN cloud-to-ground lightning detection efficeincy 
for the contiguous United States. Contours indicate detection efficeincy 
in percentage (Cummins 1995). 

Figure 6b: Approximate cloud-to-ground lightning location accuracy of 
the NLDN for the contiguous United States and surrounding area. 
Contours indicate the uncertainty radius (in km) of a plotted lightning 
strike (Cummins 1995). 



. .. • .. . 
~ 

~ 

• • .. • . + 
• ~>' ..... :. It;~ •• \¢" .. 

• Oila Bend •oua ~end 

Figure 7a: NLDN data from July 15, 1995 
between 0500 and 0600 UTC. Positive strikes 
are indicated by plus signs, negative strikes are 
indicated by diamonds. Large circle indicates 25 
mile radius surrounding KEMX. 

Figure 7b: Same as Fig. 7a except between 
0500 and 0700 UTC. 

SPECIAL WEATHER STATEMENT 
NATIONAL WEATHER SERVICE TUCSON ARIZONA 
253 PM MST SUN AUG 13 1995 

••• STRONG THUNDERSTORMS DEVELOPING NEAR I-10 AT THE BORDER 
OF PIMA AND COCHISE COUNTIES ••• 

AT 248 PM MST TUCSON DOPPLER RADAR AND LIGHTNING DETECTORS 
INDICATED STRONG THUNDERSTORMS IN FAR EASTERN PIMA ••• WESTERN 
COCHISE AND NORTHERN SANTA CRUZ COUNTIES. THE STRONGEST STORM 
NOTED WAS NEAR HWY 82 IN NORTHEAST SANTA CRUZ COUNTY. ANOTHER 
STRONG STORM WAS DEVELOPING OVER I-10 AT THE BORDER OF PIMA 
AND COCHISE COUNTIES •.• SO DRIVING CONDITIONS MAY DETERIORATE 
RAPIDLY IN THESE AREAS. 

AT THE PRESENT TIME ••• RADAR INDICATES THE STRONGER OF THESE 
STORMS ARE CAPABLE OF STRONG GUSTY WINDS NEAR 45 MPH ••• HEAVY 
RAIN ••• AND SMALL HAIL. FREQUENT LIGHTNING HAS ALSO BEEN A 
CHARACTERISTIC OF THIS AFTERNOONS STORMS. FURTHER DEVELOPMENT 
AND INTENSIFICATION OF THUNDERSTORMS THIS AFTERNOON AND EVENING 
IS POSSIBLE .•• SO STAY AWARE AND ALERT TO WHAT CAN BE A RAPIDLY 
CHANGING WEATHER SITUATION. 

MEYER 

Figure 8: Special weather statement for southeast Arizona from August 13, 
1995. 
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Figure 9: Occultation data for KEMX at Tucson. The lighter shades of gray indicate 
regions where the 0.5 degree elevation scan of KEMX is blocked by local topography. 



Figure lOa: Initial cloud-to-ground lightning strikes detected by 
the NLDN from the September 27-28, 1995 storm at 0515 UTC. 
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Figure lOb: Cloud-to-ground lightning strikes between 0515 and 
0700 UTC as the storm of September 27-28 developed and 
strengthened. 
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Figure lOc: Cloud-to-ground lighting history between 0800 and 
0830 UTC during the time of heaviest rain in Tucson. 
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Figure 11: Composite reflectivity product from KEMX for September 27-28, 1995 
at 0530 UTC. 
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Figure 12a: The 0.5 degree base reflectivity for KEMX. Depicted is the 
initiation phase of the tropical squall line at 2128 UTC August 19, 1995. 
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Figure 12b: Same as in (a) except for 0036 UTC. Mature phase of the 
tropical squall line. 
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Figure 13a: Negative flashes for the two hour 
period ending at 0000 UTC August 20, 1995 with 
contoured flash density (km2hr-1). Figure (a) 
through (f) shows the history of cloud-to-ground 
flashes for the August 19, 1995 storm. 
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Figure 13c: Same as in (a) except ending at 0400 
UTC. 
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Figure 13e: Same as in (d) except ending at 0200 
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Figure 13b: Same as in (a) except ending at 0200 
UTC. 
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Figure 13d: Positive flashes for the two hour 
period ending at 0000 UTC August 20, 1995 with 
contoured flash density (km2hr-1). 
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Figure 13f: Same as in (d) except ending at 0400 
UTC. 
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Figure 14a: Composite reflectivity from KEMX on September 27-28, 1995 at 0530 
UTC showing the poor coverage of storms developing to the southwest in Mexico. 
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Figure 14b: Cloud-to-ground lightning data from the September 27-28, 1995 splitting 
supercell thunderstorms between 0515 and 0615 UTC. 
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Figure 15a: Composite reflectivity from KEMX on September 27-28, 1995 at 
0629 UTC showing improved coverage of storms as they moved closer to the radar. 
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Figure 15b: Cloud-to-ground lightning data from the September 27-28, 1995 splitting 
supercell thunderstorms between 0515 and 0700 UTC. 
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Figure 16: The 500mb chart for·1200 UTC November 
15, 1995 from Daily Weather Summary. 
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Figure 17: Lighting history for the low topped thunderstorms that occurred on November 15, 
1995. 
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Figure 18: Depiction of NLDN cloud-to-ground lightning data coverage into Mexico. 



Figure 19a: Depiction of cloud-to-ground lightning data coverage on the national scale. Data 
depicted is from August 2, 1995. 

Figure 19b: Surface analysis from Daily Weather Summary for August 2, 1995 at 
1200 UTC. 
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Figure 20a: Composite of cloud-to-ground lightning 
strikes across southeast Arizona for the period August 1 
to August 11, 1995. 

Figure 20b: Same as in (a) except August 11 through 
August 21, 1995. 

Figure 20c: Same as in (a) except August 21 through 
September 1, 1995. 
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Figure 21: Average number of cloud-to-ground lightning strikes per square 
kilometer per year for an eight year period (1987-94) for the months of June 
through September for Arizona (Lopez et al. 1996). 
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Figure 22a: Monthly precipitation contours in Arizona for July 
1995 (preliminary analysis produced by the Office of the State 
Climatologist). 
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Figure 22b: Number of cloud-to-ground lightning strikes and lightning 
strike density contours in flashes per square kilometer for July 1995 across 
southeast Arizona. 
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